
Perl version 5.8.8 documentation - Encode::PerlIO

Page 1http://perldoc.perl.org

NAME
Encode::PerlIO -- a detailed document on Encode and PerlIO

Overview
It is very common to want to do encoding transformations when
 reading or writing files, network
connections, pipes etc.
 If Perl is configured to use the new 'perlio' IO system then Encode provides a
"layer" (see PerlIO) which can transform
 data as it is read or written.

Here is how the blind poet would modernise the encoding:

 use Encode;
 open(my $iliad,'<:encoding(iso-8859-7)','iliad.greek');
 open(my $utf8,'>:utf8','iliad.utf8');
 my @epic = <$iliad>;
 print $utf8 @epic;
 close($utf8);
 close($illiad);

In addition, the new IO system can also be configured to read/write
 UTF-8 encoded characters (as
noted above, this is efficient):

 open(my $fh,'>:utf8','anything');
 print $fh "Any \x{0021} string \N{SMILEY FACE}\n";

Either of the above forms of "layer" specifications can be made the default
 for a lexical scope with the
use open ... pragma. See open.

Once a handle is open, its layers can be altered using binmode.

Without any such configuration, or if Perl itself is built using the
 system's own IO, then write
operations assume that the file handle
 accepts only bytes and will die if a character larger than 255
is
 written to the handle. When reading, each octet from the handle becomes
 a byte-in-a-character.
Note that this default is the same behaviour
 as bytes-only languages (including Perl before v5.6)
would have,
 and is sufficient to handle native 8-bit encodings e.g. iso-8859-1,
 EBCDIC etc. and any
legacy mechanisms for handling other encodings
 and binary data.

In other cases, it is the program's responsibility to transform
 characters into bytes using the API above
before doing writes, and to
 transform the bytes read from a handle into characters before doing

"character operations" (e.g. lc, /\W+/, ...).

You can also use PerlIO to convert larger amounts of data you don't
 want to bring into memory. For
example, to convert between ISO-8859-1
 (Latin 1) and UTF-8 (or UTF-EBCDIC in EBCDIC
machines):

 open(F, "<:encoding(iso-8859-1)", "data.txt") or die $!;
 open(G, ">:utf8", "data.utf") or die $!;
 while (<F>) { print G }

 # Could also do "print G <F>" but that would pull
 # the whole file into memory just to write it out again.

More examples:

 open(my $f, "<:encoding(cp1252)")
 open(my $g, ">:encoding(iso-8859-2)")
 open(my $h, ">:encoding(latin9)") # iso-8859-15

Perl version 5.8.8 documentation - Encode::PerlIO

Page 2http://perldoc.perl.org

See also encoding for how to change the default encoding of the
 data in your script.

How does it work?
Here is a crude diagram of how filehandle, PerlIO, and Encode
 interact.

 filehandle <-> PerlIO PerlIO <-> scalar (read/printed)
 \ /
 Encode

When PerlIO receives data from either direction, it fills a buffer
 (currently with 1024 bytes) and passes
the buffer to Encode.
 Encode tries to convert the valid part and passes it back to PerlIO,
 leaving
invalid parts (usually a partial character) in the buffer.
 PerlIO then appends more data to the buffer,
calls Encode again,
 and so on until the data stream ends.

To do so, PerlIO always calls (de|en)code methods with CHECK set to 1.
 This ensures that the
method stops at the right place when it
 encounters partial character. The following is what happens
when
 PerlIO and Encode tries to encode (from utf8) more than 1024 bytes
 and the buffer boundary
happens to be in the middle of a character.

 A B C ~ \x{3000}
 41 42 43 7E e3 80 80
 <- buffer --------------->
 << encoded >>>>>>>>>>
 <- next buffer ------

Encode converts from the beginning to \x7E, leaving \xe3 in the buffer
 because it is invalid (partial
character).

Unfortunately, this scheme does not work well with escape-based
 encodings such as ISO-2022-JP.

Line Buffering
Now let's see what happens when you try to decode from ISO-2022-JP and
 the buffer ends in the
middle of a character.

			 JIS208-ESC \x{5f3e}
 A B C ~ \e $ B |DAN |
 41 42 43 7E 1b 24 41 43 46
 <- buffer --------------------------->
 << encoded >>>>>>>>>>>>>>>>>>>>>>>

As you see, the next buffer begins with \x43. But \x43 is 'C' in
 ASCII, which is wrong in this case
because we are now in JISX 0208
 area so it has to convert \x43\x46, not \x43. Unlike utf8 and EUC,

in escape-based encodings you can't tell if a given octet is a whole
 character or just part of it.

Fortunately PerlIO also supports line buffer if you tell PerlIO to use
 one instead of fixed buffer. Since
ISO-2022-JP is guaranteed to revert to ASCII at the end of the line, partial
 character will never
happen when line buffer is used.

To tell PerlIO to use line buffer, implement ->needs_lines method
 for your encoding object. See
Encode::Encoding for details.

Thanks to these efforts most encodings that come with Encode support
 PerlIO but that still leaves
following encodings.

 iso-2022-kr
 MIME-B
 MIME-Header
 MIME-Q

Perl version 5.8.8 documentation - Encode::PerlIO

Page 3http://perldoc.perl.org

Fortunately iso-2022-kr is hardly used (according to Jungshik) and
 MIME-* are very unlikely to be fed
to PerlIO because they are for mail
 headers. See Encode::MIME::Header for details.

How can I tell whether my encoding fully supports PerlIO ?
As of this writing, any encoding whose class belongs to Encode::XS and
 Encode::Unicode works. The
Encode module has a perlio_ok method
 which you can use before applying PerlIO encoding to the
filehandle.
 Here is an example:

 my $use_perlio = perlio_ok($enc);
 my $layer = $use_perlio ? "<:raw" : "<:encoding($enc)";
 open my $fh, $layer, $file or die "$file : $!";
 while(<$fh>){
 $_ = decode($enc, $_) unless $use_perlio;
 #
 }

SEE ALSO
Encode::Encoding, Encode::Supported, Encode::PerlIO, encoding, perlebcdic, "open" in perlfunc,
perlunicode, utf8, the Perl Unicode Mailing List <perl-unicode@perl.org>

