
Perl version 5.8.8 documentation - Encode::Supported

Page 1http://perldoc.perl.org

NAME
Encode::Supported -- Encodings supported by Encode

DESCRIPTION
Encoding Names

Encoding names are case insensitive. White space in names
 is ignored. In addition, an encoding may
have aliases.
 Each encoding has one "canonical" name. The "canonical"
 name is chosen from the
names of the encoding by picking
 the first in the following sequence (with a few exceptions).

The name used by the Perl community. That includes 'utf8' and 'ascii'.
 Unlike aliases,
canonical names directly reach the method so such
 frequently used words like 'utf8' don't
need to do alias lookups.

The MIME name as defined in IETF RFCs. This includes all "iso-"s.

The name in the IANA registry.

The name used by the organization that defined it.

In case de jure canonical names differ from that of the Encode
 module, they are always aliased if it
ever be implemented. So you can
 safely tell if a given encoding is implemented or not just by passing
the canonical name.

Because of all the alias issues, and because in the general case encodings have state, "Encode"
uses an encoding object internally once an operation is in progress.

Supported Encodings
As of Perl 5.8.0, at least the following encodings are recognized.
 Note that unless otherwise specified,
they are all case insensitive
 (via alias) and all occurrence of spaces are replaced with '-'.
 In other
words, "ISO 8859 1" and "iso-8859-1" are identical.

Encodings are categorized and implemented in several different modules
 but you don't have to use
Encode::XX to make them available for
 most cases. Encode.pm will automatically load those
modules on demand.

Built-in Encodings
The following encodings are always available.

 Canonical Aliases Comments & References
 --
 ascii US-ascii ISO-646-US [ECMA]
 ascii-ctrl			 Special Encoding
 iso-8859-1 latin1 [ISO]
 null				 Special Encoding
 utf8 UTF-8 [RFC2279]
 --

null and ascii-ctrl are special. "null" fails for all character
 so when you set fallback mode to PERLQQ,
HTMLCREF or XMLCREF, ALL
 CHARACTERS will fall back to character references. Ditto for

"ascii-ctrl" except for control characters. For fallback modes, see Encode.

Encode::Unicode -- other Unicode encodings
Unicode coding schemes other than native utf8 are supported by
 Encode::Unicode, which will be
autoloaded on demand.

 --
 UCS-2BE UCS-2, iso-10646-1 [IANA, UC]
 UCS-2LE [UC]

Perl version 5.8.8 documentation - Encode::Supported

Page 2http://perldoc.perl.org

 UTF-16 [UC]
 UTF-16BE [UC]
 UTF-16LE [UC]
 UTF-32 [UC]
 UTF-32BE	 UCS-4 [UC]
 UTF-32LE [UC]
 UTF-7 [RFC2152]
 --

To find how (UCS-2|UTF-(16|32))(LE|BE)? differ from one another,
 see Encode::Unicode.

UTF-7 is a special encoding which "re-encodes" UTF-16BE into a 7-bit
 encoding. It is implemented
seperately by Encode::Unicode::UTF7.

Encode::Byte -- Extended ASCII
Encode::Byte implements most single-byte encodings except for
 Symbols and EBCDIC. The following
encodings are based on single-byte
 encodings implemented as extended ASCII. Most of them map

\x80-\xff (upper half) to non-ASCII characters.

ISO-8859 and corresponding vendor mappings

Since there are so many, they are presented in table format with
 languages and
corresponding encoding names by vendors. Note that
 the table is sorted in order of ISO-8859
and the corresponding vendor
 mappings are slightly different from that of ISO. See
http://czyborra.com/charsets/iso8859.html for details.

 Lang/Regions ISO/Other Std. DOS Windows Macintosh Others
 --
 N. America (ASCII) cp437 AdobeStandardEncoding
 cp863 (DOSCanadaF)
 W. Europe iso-8859-1 cp850 cp1252 MacRoman nextstep
 hp-roman8
 cp860 (DOSPortuguese)
 Cntrl. Europe iso-8859-2 cp852 cp1250 MacCentralEurRoman
 MacCroatian
 MacRomanian
 MacRumanian
 Latin3[1] iso-8859-3
 Latin4[2] iso-8859-4
 Cyrillics iso-8859-5 cp855 cp1251 MacCyrillic
 (See also next section) cp866 MacUkrainian
 Arabic iso-8859-6 cp864 cp1256 MacArabic
 cp1006 MacFarsi
 Greek iso-8859-7 cp737 cp1253 MacGreek
 cp869 (DOSGreek2)
 Hebrew iso-8859-8 cp862 cp1255 MacHebrew
 Turkish iso-8859-9 cp857 cp1254 MacTurkish
 Nordics iso-8859-10 cp865
 cp861 MacIcelandic
 MacSami
 Thai iso-8859-11[3] cp874 MacThai
 (iso-8859-12 is nonexistent. Reserved for Indics?)
 Baltics iso-8859-13 cp775 cp1257
 Celtics iso-8859-14
 Latin9 [4] iso-8859-15
 Latin10 iso-8859-16
 Vietnamese viscii cp1258 MacVietnamese
 --

Perl version 5.8.8 documentation - Encode::Supported

Page 3http://perldoc.perl.org

 [1] Esperanto, Maltese, and Turkish. Turkish is now on 8859-9.
 [2] Baltics. Now on 8859-10, except for Latvian.
 [3] TIS 620 + Non-Breaking Space (0xA0 / U+00A0)
 [4] Nicknamed Latin0; the Euro sign as well as French and Finnish
 letters that are missing from 8859-1 were added.

All cp* are also available as ibm-*, ms-*, and windows-* . See also
http://czyborra.com/charsets/codepages.html.

Macintosh encodings don't seem to be registered in such entities as
 IANA. "Canonical" names
in Encode are based upon Apple's Tech Note
 1150. See
http://developer.apple.com/technotes/tn/tn1150.html for details.

KOI8 - De Facto Standard for the Cyrillic world

Though ISO-8859 does have ISO-8859-5, the KOI8 series is far more
 popular in the Net.
Encode comes with the following KOI charsets.
 For gory details, see
http://czyborra.com/charsets/cyrillic.html

 --
 koi8-f
 koi8-r cp878 [RFC1489]
 koi8-u [RFC2319]
 --

gsm0338 - Hentai Latin 1

GSM0338 is for GSM handsets. Though it shares alphanumerals with
 ASCII, control character
ranges and other parts are mapped very
 differently, mainly to store Greek characters. There
are also escape
 sequences (starting with 0x1B) to cover e.g. the Euro sign. Some
 special
cases like a trailing 0x00 byte or a lone 0x1B byte are not
 well-defined and decode() will return
an empty string for them.
 One possible workaround is

 $gsm =~ s/\x00\z/\x00\x00/;
 $uni = decode("gsm0338", $gsm);
 $uni .= "\xA0" if $gsm =~ /\x1B\z/;

Note that the Encode implementation of GSM0338 does not implement the
 reuse of Latin
capital letters as Greek capital letters (for example,
 the 0x5A is U+005A (LATIN CAPITAL
LETTER Z), not U+0396 (GREEK CAPITAL
 LETTER ZETA).

The GSM0338 is also covered in Encode::Byte even though it is not
 an "extended ASCII"
encoding.

CJK: Chinese, Japanese, Korean (Multibyte)
Note that Vietnamese is listed above. Also read "Encoding vs Charset"
 below. Also note that these
are implemented in distinct modules by
 countries, due to the size concerns (simplified Chinese is
mapped
 to 'CN', continental China, while traditional Chinese is mapped to
 'TW', Taiwan). Please refer
to their respective documentation pages.

Encode::CN -- Continental China

 Standard DOS/Win Macintosh Comment/Reference
 --
 euc-cn [1] MacChineseSimp
 (gbk) cp936 [2]
 gb12345-raw { GB12345 without CES }
 gb2312-raw { GB2312 without CES }
 hz
 iso-ir-165
 --

Perl version 5.8.8 documentation - Encode::Supported

Page 4http://perldoc.perl.org

 [1] GB2312 is aliased to this. See L<Microsoft-related naming
mess>
 [2] gbk is aliased to this. See L<Microsoft-related naming mess>

Encode::JP -- Japan

 Standard DOS/Win Macintosh Comment/Reference
 --
 euc-jp
 shiftjis cp932 macJapanese
 7bit-jis
 iso-2022-jp [RFC1468]
 iso-2022-jp-1 [RFC2237]
 jis0201-raw { JIS X 0201 (roman + halfwidth kana) without CES }
 jis0208-raw { JIS X 0208 (Kanji + fullwidth kana) without CES }
 jis0212-raw { JIS X 0212 (Extended Kanji) without CES }
 --

Encode::KR -- Korea

 Standard DOS/Win Macintosh Comment/Reference
 --
 euc-kr MacKorean [RFC1557]
 cp949 [1]
 iso-2022-kr [RFC1557]
 johab [KS X 1001:1998, Annex 3]
 ksc5601-raw { KSC5601 without CES }
 --

 [1] ks_c_5601-1987, (x-)?windows-949, and uhc are aliased to this.
 See below.

Encode::TW -- Taiwan

 Standard DOS/Win Macintosh Comment/Reference
 --
 big5-eten cp950 MacChineseTrad {big5 aliased to big5-eten}
 big5-hkscs
 --

Encode::HanExtra -- More Chinese via CPAN

Due to the size concerns, additional Chinese encodings below are
 distributed separately on
CPAN, under the name Encode::HanExtra.

 Standard DOS/Win Macintosh Comment/Reference
 --
 big5ext CMEX's Big5e Extension
 big5plus CMEX's Big5+ Extension
 cccii Chinese Character Code for Information Interchange
 euc-tw EUC (Extended Unix Character)
 gb18030 GBK with Traditional Characters
 --

Encode::JIS2K -- JIS X 0213 encodings via CPAN

Due to size concerns, additional Japanese encodings below are
 distributed separately on
CPAN, under the name Encode::JIS2K.

Perl version 5.8.8 documentation - Encode::Supported

Page 5http://perldoc.perl.org

 Standard DOS/Win Macintosh Comment/Reference
 --
 euc-jisx0213
 shiftjisx0123
 iso-2022-jp-3
 jis0213-1-raw
 jis0213-2-raw
 --

Miscellaneous encodings
Encode::EBCDIC

See perlebcdic for details.

 --
 cp37
 cp500
 cp875
 cp1026
 cp1047
 posix-bc
 --

Encode::Symbols

For symbols and dingbats.

 --
 symbol
 dingbats
 MacDingbats
 AdobeZdingbat
 AdobeSymbol
 --

Encode::MIME::Header

Strictly speaking, MIME header encoding documented in RFC 2047 is more
 of encapsulation
than encoding. However, their support in modern
 world is imperative so they are supported.

 --
 MIME-Header [RFC2047]
 MIME-B [RFC2047]
 MIME-Q [RFC2047]
 --

Encode::Guess

This one is not a name of encoding but a utility that lets you pick up
 the most appropriate
encoding for a data out of given suspects. See Encode::Guess for details.

Unsupported encodings
The following encodings are not supported as yet; some because they
 are rarely used, some because
of technical difficulties. They may
 be supported by external modules via CPAN in the future, however.

ISO-2022-JP-2 [RFC1554]

Not very popular yet. Needs Unicode Database or equivalent to
 implement encode() (because
it includes JIS X 0208/0212, KSC5601, and
 GB2312 simultaneously, whose code points in
Unicode overlap. So you
 need to lookup the database to determine to what character set a

Perl version 5.8.8 documentation - Encode::Supported

Page 6http://perldoc.perl.org

given
 Unicode character should belong).

ISO-2022-CN [RFC1922]

Not very popular. Needs CNS 11643-1 and -2 which are not available in
 this module. CNS
11643 is supported (via euc-tw) in Encode::HanExtra.
 Autrijus Tang may add support for this
encoding in his module in future.

Various HP-UX encodings

The following are unsupported due to the lack of mapping data.

 '8' - arabic8, greek8, hebrew8, kana8, thai8, and turkish8
 '15' - japanese15, korean15, and roi15

Cyrillic encoding ISO-IR-111

Anton Tagunov doubts its usefulness.

ISO-8859-8-1 [Hebrew]

None of the Encode team knows Hebrew enough (ISO-8859-8, cp1255 and
 MacHebrew are
supported because and just because there were mappings
 available at
http://www.unicode.org/). Contributions welcome.

ISIRI 3342, Iran System, ISIRI 2900 [Farsi]

Ditto.

Thai encoding TCVN

Ditto.

Vietnamese encodings VPS

Though Jungshik Shin has reported that Mozilla supports this encoding,
 it was too late before
5.8.0 for us to add it. In the future, it
 may be available via a separate module. See
http://lxr.mozilla.org/seamonkey/source/intl/uconv/ucvlatin/vps.uf
 and
http://lxr.mozilla.org/seamonkey/source/intl/uconv/ucvlatin/vps.ut
 if you are interested in
helping us.

Various Mac encodings

The following are unsupported due to the lack of mapping data.

 MacArmenian, MacBengali, MacBurmese, MacEthiopic
 MacExtArabic, MacGeorgian, MacKannada, MacKhmer
 MacLaotian, MacMalayalam, MacMongolian, MacOriya
 MacSinhalese, MacTamil, MacTelugu, MacTibetan
 MacVietnamese

The rest which are already available are based upon the vendor mappings
 at
http://www.unicode.org/Public/MAPPINGS/VENDORS/APPLE/ .

(Mac) Indic encodings

The maps for the following are available at http://www.unicode.org/
 but remain unsupport
because those encodings need algorithmical
 approach, currently unsupported by enc2xs:

 MacDevanagari
 MacGurmukhi
 MacGujarati

For details, please see Unicode mapping issues and notes: at
http://www.unicode.org/Public/MAPPINGS/VENDORS/APPLE/DEVANAGA.TXT .

I believe this issue is prevalent not only for Mac Indics but also in
 other Indic encodings, but

Perl version 5.8.8 documentation - Encode::Supported

Page 7http://perldoc.perl.org

the above were the only Indic encodings
 maps that I could find at http://www.unicode.org/ .

Encoding vs. Charset -- terminology
We are used to using the term (character) encoding and character
 set interchangeably. But just as
confusing the terms byte and
 character is dangerous and the terms should be differentiated when

needed, we need to differentiate encoding and character set.

To understand that, here is a description of how we make computers
 grok our characters.

First we start with which characters to include. We call this
 collection of characters character
repertoire.

Then we have to give each character a unique ID so your computer can
 tell the difference
between 'a' and 'A'. This itemized character
 repertoire is now a character set.

If your computer can grow the character set without further
 processing, you can go ahead and
use it. This is called a coded
 character set (CCS) or raw character encoding. ASCII is used
this
 way for most cases.

But in many cases, especially multi-byte CJK encodings, you have to
 tweak a little more. Your
network connection may not accept any data
 with the Most Significant Bit set, and your
computer may not be able to
 tell if a given byte is a whole character or just half of it. So you

have to encode the character set to use it.

A character encoding scheme (CES) determines how to encode a given
 character set, or a set
of multiple character sets. 7bit ISO-2022 is
 an example of a CES. You switch between
character sets via escape
 sequences.

Technically, or mathematically, speaking, a character set encoded in
 such a CES that maps character
by character may form a CCS. EUC is such
 an example. The CES of EUC is as follows:

Map ASCII unchanged.

Map such a character set that consists of 94 or 96 powered by N
 members by adding 0x80 to
each byte.

You can also use 0x8e and 0x8f to indicate that the following sequence of
 characters belongs
to yet another character set. To each following byte
 is added the value 0x80.

By carefully looking at the encoded byte sequence, you can find that the
 byte sequence conforms a
unique number. In that sense, EUC is a CCS
 generated by a CES above from up to four CCS
(complicated?). UTF-8
 falls into this category. See "UTF-8" in perlUnicode to find out how
 UTF-8
maps Unicode to a byte sequence.

You may also have found out by now why 7bit ISO-2022 cannot comprise
 a CCS. If you look at a byte
sequence \x21\x21, you can't tell if
 it is two !'s or IDEOGRAPHIC SPACE. EUC maps the latter to
\xA1\xA1
 so you have no trouble differentiating between "!!". and " ".

Encoding Classification (by Anton Tagunov and Dan Kogai)
This section tries to classify the supported encodings by their applicability for information exchange
over the Internet and to choose the most suitable aliases to name them in the context of such
communication.

To (en|de)code encodings marked by (**), you need Encode::HanExtra, available from
CPAN.

Encoding names

 US-ASCII UTF-8 ISO-8859-* KOI8-R
 Shift_JIS EUC-JP ISO-2022-JP ISO-2022-JP-1
 EUC-KR Big5 GB2312

Perl version 5.8.8 documentation - Encode::Supported

Page 8http://perldoc.perl.org

are registered with IANA as preferred MIME names and may
 be used over the Internet.

Shift_JIS has been officialized by JIS X 0208:1997. Microsoft-related naming mess gives details.

GB2312 is the IANA name for EUC-CN.
 See Microsoft-related naming mess for details.

GB_2312-80 raw encoding is available as gb2312-raw
 with Encode. See Encode::CN for details.

 EUC-CN
 KOI8-U [RFC2319]

have not been registered with IANA (as of March 2002) but
 seem to be supported by major web
browsers. The IANA name for EUC-CN is GB2312.

 KS_C_5601-1987

is heavily misused.
 See Microsoft-related naming mess for details.

KS_C_5601-1987 raw encoding is available as kcs5601-raw
 with Encode. See Encode::KR for
details.

 UTF-16 UTF-16BE UTF-16LE

are IANA-registered charsets. See [RFC 2781] for details.
 Jungshik Shin reports that UTF-16 with a
BOM is well accepted
 by MS IE 5/6 and NS 4/6. Beware however that

UTF-16 support in any software you're going to be
 using/interoperating with has probably
been less tested
 then UTF-8 support

UTF-8 coded data seamlessly passes traditional
 command piping (cat, more, etc.) while
UTF-16 coded
 data is likely to cause confusion (with its zero bytes,
 for example)

it is beyond the power of words to describe the way HTML browsers
 encode non-ASCII form
data. To get a general impression, visit
http://ppewww.ph.gla.ac.uk/~flavell/charset/form-i18n.html.
 While encoding of form data has
stabilized for UTF-8 encoded pages
 (at least IE 5/6, NS 6, and Opera 6 behave consistently),
be sure to
 expect fun (and cross-browser discrepancies) with UTF-16 encoded
 pages!

The rule of thumb is to use UTF-8 unless you know what
 you're doing and unless you really benefit
from using UTF-16.

 ISO-IR-165 [RFC1345]
 VISCII
 GB 12345
 GB 18030 (**) (see links bellow)
 EUC-TW (**)

are totally valid encodings but not registered at IANA.
 The names under which they are listed here are
probably the
 most widely-known names for these encodings and are recommended
 names.

 BIG5PLUS (**)

is a proprietary name.

Microsoft-related naming mess
Microsoft products misuse the following names:

KS_C_5601-1987

Microsoft extension to EUC-KR.

Perl version 5.8.8 documentation - Encode::Supported

Page 9http://perldoc.perl.org

Proper names: CP949, UHC, x-windows-949 (as used by Mozilla).

See http://lists.w3.org/Archives/Public/ietf-charsets/2001AprJun/0033.html
 for details.

Encode aliases KS_C_5601-1987 to cp949 to reflect this common
 misusage. Raw
KS_C_5601-1987 encoding is available as kcs5601-raw.

See Encode::KR for details.

GB2312

Microsoft extension to EUC-CN.

Proper names: CP936, GBK.

GB2312 has been registered in the EUC-CN meaning at
 IANA. This has partially repaired the
situation: Microsoft's GB2312 has become a superset of the official GB2312.

Encode aliases GB2312 to euc-cn in full agreement with
 IANA registration. cp936 is
supported separately. Raw GB_2312-80 encoding is available as gb2312-raw.

See Encode::CN for details.

Big5

Microsoft extension to Big5.

Proper name: CP950.

Encode separately supports Big5 and cp950.

Shift_JIS

Microsoft's understanding of Shift_JIS.

JIS has not endorsed the full Microsoft standard however.
 The official Shift_JIS includes
only JIS X 0201 and JIS X 0208
 character sets, while Microsoft has always used Shift_JIS

to encode a wider character repertoire. See IANA registration for Windows-31J.

As a historical predecessor, Microsoft's variant
 probably has more rights for the name, though
it may be objected
 that Microsoft shouldn't have used JIS as part of the name
 in the first place.

Unambiguous name: CP932. IANA name (also used by Mozilla, and
 provided as an alias by
Encode): Windows-31J.

Encode separately supports Shift_JIS and cp932.

Glossary
character repertoire

A collection of unique characters. A character set in the strictest
 sense. At this stage,
characters are not numbered.

coded character set (CCS)

A character set that is mapped in a way computers can use directly.
 Many character
encodings, including EUC, fall in this category.

character encoding scheme (CES)

An algorithm to map a character set to a byte sequence. You don't
 have to be able to tell
which character set a given byte sequence
 belongs. 7-bit ISO-2022 is a CES but it cannot be
a CCS. EUC is an
 example of being both a CCS and CES.

charset (in MIME context)

has long been used in the meaning of encoding, CES.

While the word combination character set has lost this meaning
 in MIME context since
[RFC 2130], the charset abbreviation has
 retained it. This is how [RFC 2277] and [RFC
2278] bless charset:

 This document uses the term "charset" to mean a set of rules for

Perl version 5.8.8 documentation - Encode::Supported

Page 10http://perldoc.perl.org

 mapping from a sequence of octets to a sequence of characters, such
 as the combination of a coded character set and a character encoding
 scheme; this is also what is used as an identifier in MIME
"charset="
 parameters, and registered in the IANA charset registry ... (Note
 that this is NOT a term used by other standards bodies, such as
ISO).
 [RFC 2277]

EUC

Extended Unix Character. See ISO-2022.

ISO-2022

A CES that was carefully designed to coexist with ASCII. There are a 7
 bit version and an 8 bit
version.

The 7 bit version switches character set via escape sequence so it
 cannot form a CCS. Since
this is more difficult to handle in programs
 than the 8 bit version, the 7 bit version is not very
popular except for
 iso-2022-jp, the de facto standard CES for e-mails.

The 8 bit version can form a CCS. EUC and ISO-8859 are two examples
 thereof. Pre-5.6 perl
could use them as string literals.

UCS

Short for Universal Character Set. When you say just UCS, it means Unicode.

UCS-2

ISO/IEC 10646 encoding form: Universal Character Set coded in two
 octets.

Unicode

A character set that aims to include all character repertoires of the
 world. Many character sets
in various national as well as industrial
 standards have become, in a way, just subsets of
Unicode.

UTF

Short for Unicode Transformation Format. Determines how to map a
 Unicode character into a
byte sequence.

UTF-16

A UTF in 16-bit encoding. Can either be in big endian or little
 endian. The big endian version is
called UTF-16BE (equal to UCS-2 + surrogate support) and the little endian version is called
UTF-16LE.

See Also
Encode, Encode::Byte, Encode::CN, Encode::JP, Encode::KR, Encode::TW, Encode::EBCDIC,
Encode::Symbol Encode::MIME::Header, Encode::Guess

References
ECMA

European Computer Manufacturers Association http://www.ecma.ch

ECMA-035 (eq ISO-2022)

http://www.ecma.ch/ecma1/STAND/ECMA-035.HTM

The specification of ISO-2022 is available from the link above.

IANA

Perl version 5.8.8 documentation - Encode::Supported

Page 11http://perldoc.perl.org

Internet Assigned Numbers Authority http://www.iana.org/

Assigned Charset Names by IANA

http://www.iana.org/assignments/character-sets

Most of the canonical names in Encode derive from this list
 so you can directly
apply the string you have extracted from MIME
 header of mails and web pages.

ISO

International Organization for Standardization http://www.iso.ch/

RFC

Request For Comments -- need I say more? http://www.rfc-editor.org/, http://www.rfc.net/,
http://www.faqs.org/rfcs/

UC

Unicode Consortium http://www.unicode.org/

Unicode Glossary

http://www.unicode.org/glossary/

The glossary of this document is based upon this site.

Other Notable Sites
czyborra.com

http://czyborra.com/

Contains a lot of useful information, especially gory details of ISO
 vs. vendor mappings.

CJK.inf

http://www.oreilly.com/people/authors/lunde/cjk_inf.html

Somewhat obsolete (last update in 1996), but still useful. Also try

ftp://ftp.oreilly.com/pub/examples/nutshell/cjkv/pdf/GB18030_Summary.pdf

You will find brief info on EUC-CN, GBK and mostly on GB 18030.

Jungshik Shin's Hangul FAQ

http://jshin.net/faq

And especially its subject 8.

http://jshin.net/faq/qa8.html

A comprehensive overview of the Korean (KS *) standards.

debian.org: "Introduction to i18n"

A brief description for most of the mentioned CJK encodings is
 contained in
http://www.debian.org/doc/manuals/intro-i18n/ch-codes.en.html

Offline sources
CJKV Information Processing by Ken Lunde

CJKV Information Processing
 1999 O'Reilly & Associates, ISBN : 1-56592-224-7

The modern successor of CJK.inf.

Features a comprehensive coverage of CJKV character sets and
 encodings along with many
other issues faced by anyone trying
 to better support CJKV languages/scripts in all the areas
of
 information processing.

To purchase this book, visit http://www.oreilly.com/catalog/cjkvinfo/
 or your favourite
bookstore.

