
Perl version 5.8.8 documentation - ExtUtils::Constant::Base

Page 1http://perldoc.perl.org

NAME
ExtUtils::Constant::Base - base class for ExtUtils::Constant objects

SYNOPSIS
 require ExtUtils::Constant::Base;
 @ISA = 'ExtUtils::Constant::Base';

DESCRIPTION
ExtUtils::Constant::Base provides a base implementation of methods to
 generate C code to give fast
constant value lookup by named string. Currently
 it's mostly used ExtUtils::Constant::XS, which
generates the lookup code
 for the constant() subroutine found in many XS modules.

USAGE
ExtUtils::Constant::Base exports no subroutines. The following methods are
 available

header

A method returning a scalar containing definitions needed, typically for a
 C header file.

memEQ_clause args_hashref

A method to return a suitable C if statement to check whether name
 is equal to the C
variable name. If checked_at is defined, then it
 is used to avoid memEQ for short names, or to
generate a comment to
 highlight the position of the character in the switch statement.

If i<checked_at> is a reference to a scalar, then instead it gives
 the characters pre-checked at
the beginning, (and the number of chars by
 which the C variable name has been advanced.
These need to be chopped from
 the front of name).

dump_names arg_hashref, ITEM...

An internal function to generate the embedded perl code that will regenerate
 the constant
subroutines. default_type, types and ITEMs are the
 same as for C_constant. indent is treated
as number of spaces to indent
 by. If declare_types is true a $types is always declared in
the perl
 code generated, if defined and false never declared, and if undefined $types
 is only
declared if the values in types as passed in cannot be inferred from default_types and the
ITEMs.

assign arg_hashref, VALUE...

A method to return a suitable assignment clause. If type is aggregate
 (eg PVN expects both
pointer and length) then there should be multiple VALUEs for the components. pre and post if
defined give snippets
 of C code to proceed and follow the assignment. pre will be at the start

of a block, so variables may be defined in it.

return_clause arg_hashref, ITEM

A method to return a suitable #ifdef clause. ITEM is a hashref
 (as passed to C_constant
and match_clause. indent is the number
 of spaces to indent, defaulting to 6.

switch_clause arg_hashref, NAMELEN, ITEMHASH, ITEM...

An internal method to generate a suitable switch clause, called by C_constant ITEMs are
in the hash ref format as given in the description
 of C_constant, and must all have the
names of the same length, given by NAMELEN. ITEMHASH is a reference to a hash, keyed
by name, values being
 the hashrefs in the ITEM list. (No parameters are modified, and there
can
 be keys in the ITEMHASH that are not in the list of ITEMs without
 causing problems - the
hash is passed in to save generating it afresh for
 each call).

params WHAT

An "internal" method, subject to change, currently called to allow an
 overriding class to cache
information that will then be passed into all
 the *param* calls. (Yes, having to read the source

Perl version 5.8.8 documentation - ExtUtils::Constant::Base

Page 2http://perldoc.perl.org

to make sense of this is
 considered a known bug). WHAT is be a hashref of types the constant
function will return. In ExtUtils::Constant::XS this method is used to
 returns a hashref keyed IV
NV PV SV to show which combination of pointers will
 be needed in the C argument list
generated by
 C_constant_other_params_definition and C_constant_other_params

dogfood arg_hashref, ITEM...

An internal function to generate the embedded perl code that will regenerate
 the constant
subroutines. Parameters are the same as for C_constant.

Currently the base class does nothing and returns an empty string.

C_constant arg_hashref, ITEM...

A function that returns a list of C subroutine definitions that return
 the value and type of
constants when passed the name by the XS wrapper. ITEM... gives a list of constant names.
Each can either be a string,
 which is taken as a C macro name, or a reference to a hash with
the following
 keys

name

The name of the constant, as seen by the perl code.

type

The type of the constant (IV, NV etc)

value

A C expression for the value of the constant, or a list of C expressions if
 the
type is aggregate. This defaults to the name if not given.

macro

The C pre-processor macro to use in the #ifdef. This defaults to the name,
and is mainly used if value is an enum. If a reference an
 array is passed then
the first element is used in place of the #ifdef
 line, and the second element in
place of the #endif. This allows
 pre-processor constructions such as

 #if defined (foo)
 #if !defined (bar)
 ...
 #endif
 #endif

to be used to determine if a constant is to be defined.

A "macro" 1 signals that the constant is always defined, so the #if/#endif

test is omitted.

default

Default value to use (instead of croaking with "your vendor has not
 defined...")
to return if the macro isn't defined. Specify a reference to
 an array with type
followed by value(s).

pre

C code to use before the assignment of the value of the constant. This allows

you to use temporary variables to extract a value from part of a struct
 and
return this as value. This C code is places at the start of a block,
 so you can
declare variables in it.

post

C code to place between the assignment of value (to a temporary) and the

return from the function. This allows you to clear up anything in pre.
 Rarely

Perl version 5.8.8 documentation - ExtUtils::Constant::Base

Page 3http://perldoc.perl.org

needed.def_pre

def_post

Equivalents of pre and post for the default value.

utf8

Generated internally. Is zero or undefined if name is 7 bit ASCII,
 "no" if the
name is 8 bit (and so should only match if SvUTF8() is false),
 "yes" if the name
is utf8 encoded.

The internals automatically clone any name with characters 128-255 but none

256+ (ie one that could be either in bytes or utf8) into a second entry
 which is
utf8 encoded.

weight

Optional sorting weight for names, to determine the order of
 linear testing when
multiple names fall in the same case of a switch clause.
 Higher comes earlier,
undefined defaults to zero.

In the argument hashref, package is the name of the package, and is only
 used in comments
inside the generated C code. subname defaults to constant if undefined.

default_type is the type returned by ITEMs that don't specify their
 type. It defaults to the value
of default_type(). types should be given
 either as a comma separated list of types that
the C subroutine subname
 will generate or as a reference to a hash. default_type will be
added to
 the list if not present, as will any types given in the list of ITEMs. The
 resultant list
should be the same list of types that XS_constant is
 given. [Otherwise XS_constant and
C_constant may differ in the number of
 parameters to the constant function. indent is
currently unused and
 ignored. In future it may be used to pass in information used to change
the C
 indentation style used.] The best way to maintain consistency is to pass in a
 hash
reference and let this function update it.

breakout governs when child functions of subname are generated. If there
 are breakout or
more ITEMs with the same length of name, then the code
 to switch between them is placed
into a function named subname_len, for
 example constant_5 for names 5 characters long.
The default breakout is
 3. A single ITEM is always inlined.

BUGS
Not everything is documented yet.

Probably others.

AUTHOR
Nicholas Clark <nick@ccl4.org> based on the code in h2xs by Larry Wall and
 others

