
Perl version 5.8.8 documentation - File::Copy

Page 1http://perldoc.perl.org

NAME
File::Copy - Copy files or filehandles

SYNOPSIS
	 use File::Copy;

	 copy("file1","file2") or die "Copy failed: $!";
	 copy("Copy.pm",*STDOUT);
	 move("/dev1/fileA","/dev2/fileB");

	 use File::Copy "cp";

	 $n = FileHandle->new("/a/file","r");
	 cp($n,"x");

DESCRIPTION
The File::Copy module provides two basic functions, copy and move, which are useful for getting the
contents of a file from
 one place to another.

The copy function takes two
 parameters: a file to copy from and a file to copy to. Either

argument may be a string, a FileHandle reference or a FileHandle
 glob. Obviously, if the first
argument is a filehandle of some
 sort, it will be read from, and if it is a file name it will
 be
opened for reading. Likewise, the second argument will be
 written to (and created if need be).
Trying to copy a file on top
 of itself is a fatal error.

Note that passing in
 files as handles instead of names may lead to loss of information

on some operating systems; it is recommended that you use file
 names whenever
possible. Files are opened in binary mode where
 applicable. To get a consistent behaviour
when copying from a
 filehandle to a file, use binmode on the filehandle.

An optional third parameter can be used to specify the buffer
 size used for copying. This is the
number of bytes from the
 first file, that wil be held in memory at any given time, before
 being
written to the second file. The default buffer size depends
 upon the file, but will generally be
the whole file (up to 2Mb), or
 1k for filehandles that do not reference files (eg. sockets).

You may use the syntax use File::Copy "cp" to get at the
 "cp" alias for this function. The
syntax is exactly the same.

The move function also takes two parameters: the current name
 and the intended name of the
file to be moved. If the destination
 already exists and is a directory, and the source is not a

directory, then the source file will be renamed into the directory
 specified by the destination.

If possible, move() will simply rename the file. Otherwise, it copies
 the file to the new location
and deletes the original. If an error occurs
 during this copy-and-delete process, you may be
left with a (possibly partial)
 copy of the file under the destination name.

You may use the "mv" alias for this function in the same way that
 you may use the "cp" alias
for copy.

File::Copy also provides the syscopy routine, which copies the
 file specified in the first parameter to
the file specified in the
 second parameter, preserving OS-specific attributes and file
 structure. For
Unix systems, this is equivalent to the simple copy routine, which doesn't preserve OS-specific
attributes. For
 VMS systems, this calls the rmscopy routine (see below). For OS/2
 systems, this calls
the syscopy XSUB directly. For Win32 systems,
 this calls Win32::CopyFile.

On Mac OS (Classic), syscopy calls Mac::MoreFiles::FSpFileCopy,
 if available.

Perl version 5.8.8 documentation - File::Copy

Page 2http://perldoc.perl.org

Special behaviour if syscopy is defined (OS/2, VMS and Win32)
If both arguments to copy are not file handles,
 then copy will perform a "system copy" of
 the input file
to a new output file, in order to preserve file
 attributes, indexed file structure, etc. The buffer size

parameter is ignored. If either argument to copy is a
 handle to an opened file, then data is copied
using Perl
 operators, and no effort is made to preserve file attributes
 or record structure.

The system copy routine may also be called directly under VMS and OS/2
 as
File::Copy::syscopy (or under VMS as File::Copy::rmscopy, which
 is the routine that does
the actual work for syscopy).

rmscopy($from,$to[,$date_flag])

The first and second arguments may be strings, typeglobs, typeglob
 references, or objects
inheriting from IO::Handle;
 they are used in all cases to obtain the filespec of the input and
output files, respectively. The
 name and type of the input file are used as defaults for the

output file, if necessary.

A new version of the output file is always created, which
 inherits the structure and RMS
attributes of the input file,
 except for owner and protections (and possibly timestamps;
 see
below). All data from the input file is copied to the
 output file; if either of the first two
parameters to rmscopy
 is a file handle, its position is unchanged. (Note that this
 means a file
handle pointing to the output file will be
 associated with an old version of that file after
rmscopy
 returns, not the newly created version.)

The third parameter is an integer flag, which tells rmscopy
 how to handle timestamps. If it is <
0, none of the input file's
 timestamps are propagated to the output file. If it is > 0, then
 it is
interpreted as a bitmask: if bit 0 (the LSB) is set, then
 timestamps other than the revision date
are propagated; if bit 1
 is set, the revision date is propagated. If the third parameter
 to
rmscopy is 0, then it behaves much like the DCL COPY command:
 if the name or type of the
output file was explicitly specified,
 then no timestamps are propagated, but if they were taken
implicitly
 from the input filespec, then all timestamps other than the
 revision date are
propagated. If this parameter is not supplied,
 it defaults to 0.

Like copy, rmscopy returns 1 on success. If an error occurs,
 it sets $!, deletes the output
file, and returns 0.

RETURN
All functions return 1 on success, 0 on failure.
 $! will be set if an error was encountered.

NOTES
On Mac OS (Classic), the path separator is ':', not '/', and the current directory is denoted as ':',
not '.'. You should be careful about specifying relative pathnames. While a full path always
begins with a volume name, a relative pathname should always begin with a ':'. If specifying a
volume name only, a trailing ':' is required.

E.g.

 copy("file1", "tmp"); # creates the file 'tmp' in the
current directory
 copy("file1", ":tmp:"); # creates :tmp:file1
 copy("file1", ":tmp"); # same as above
 copy("file1", "tmp"); # same as above, if 'tmp' is a
directory (but don't do
 # that, since it may cause confusion,
see example #1)
 copy("file1", "tmp:file1"); # error, since 'tmp:' is not a volume
 copy("file1", ":tmp:file1"); # ok, partial path
 copy("file1", "DataHD:"); # creates DataHD:file1

 move("MacintoshHD:fileA", "DataHD:fileB"); # moves (don't copies)

Perl version 5.8.8 documentation - File::Copy

Page 3http://perldoc.perl.org

files from one
 # volume to another

AUTHOR
File::Copy was written by Aaron Sherman <ajs@ajs.com> in 1995,
 and updated by Charles Bailey <
bailey@newman.upenn.edu> in 1996.

