
Perl version 5.8.8 documentation - Locale::Maketext::TPJ13

Page 1http://perldoc.perl.org

NAME
Locale::Maketext::TPJ13 -- article about software localization

SYNOPSIS
 # This an article, not a module.

DESCRIPTION
The following article by Sean M. Burke and Jordan Lachler
 first appeared in The Perl
 Journal #13 and
is copyright 1999 The Perl Journal. It appears
 courtesy of Jon Orwant and The Perl Journal. This
document may be
 distributed under the same terms as Perl itself.

Localization and Perl: gettext breaks, Maketext fixes
by Sean M. Burke and Jordan Lachler

This article points out cases where gettext (a common system for
 localizing software interfaces -- i.e.,
making them work in the user's
 language of choice) fails because of basic differences between
human
 languages. This article then describes Maketext, a new system capable
 of correctly treating
these differences.

A Localization Horror Story: It Could Happen To You
"There are a number of languages spoken by human beings in this
 world."

-- Harald Tveit Alvestrand, in RFC 1766, "Tags for the
 Identification of Languages"

Imagine that your task for the day is to localize a piece of software
 -- and luckily for you, the only
output the program emits is two
 messages, like this:

 I scanned 12 directories.

 Your query matched 10 files in 4 directories.

So how hard could that be? You look at the code that
 produces the first item, and it reads:

 printf("I scanned %g directories.",
 $directory_count);

You think about that, and realize that it doesn't even work right for
 English, as it can produce this
output:

 I scanned 1 directories.

So you rewrite it to read:

 printf("I scanned %g %s.",
 $directory_count,
 $directory_count == 1 ?
 "directory" : "directories",
);

...which does the Right Thing. (In case you don't recall, "%g" is for
 locale-specific number
interpolation, and "%s" is for string
 interpolation.)

But you still have to localize it for all the languages you're
 producing this software for, so you pull
Locale::gettext off of CPAN
 so you can access the gettext C functions you've heard are standard

for localization tasks.

And you write:

Perl version 5.8.8 documentation - Locale::Maketext::TPJ13

Page 2http://perldoc.perl.org

 printf(gettext("I scanned %g %s."),
 $dir_scan_count,
 $dir_scan_count == 1 ?
 gettext("directory") : gettext("directories"),
);

But you then read in the gettext manual (Drepper, Miller, and Pinard 1995)
 that this is not a good idea,
since how a single word like "directory"
 or "directories" is translated may depend on context -- and this
is
 true, since in a case language like German or Russian, you'd may need
 these words with a different
case ending in the first instance (where the
 word is the object of a verb) than in the second instance,
which you haven't even
 gotten to yet (where the word is the object of a preposition, "in %g

directories") -- assuming these keep the same syntax when translated
 into those languages.

So, on the advice of the gettext manual, you rewrite:

 printf($dir_scan_count == 1 ?
 gettext("I scanned %g directory.") :
 gettext("I scanned %g directories."),
 $dir_scan_count);

So, you email your various translators (the boss decides that the
 languages du jour are Chinese,
Arabic, Russian, and Italian, so you
 have one translator for each), asking for translations for "I
scanned
 %g directory." and "I scanned %g directories.". When they reply,
 you'll put that in the
lexicons for gettext to use when it localizes
 your software, so that when the user is running under the
"zh"
 (Chinese) locale, gettext("I scanned %g directory.") will return the
 appropriate Chinese text, with
a "%g" in there where printf can then
 interpolate $dir_scan.

Your Chinese translator emails right back -- he says both of these
 phrases translate to the same thing
in Chinese, because, in linguistic
 jargon, Chinese "doesn't have number as a grammatical category" --
whereas English does. That is, English has grammatical rules that
 refer to "number", i.e., whether
something is grammatically singular
 or plural; and one of these rules is the one that forces nouns to
take
 a plural suffix (generally "s") when in a plural context, as they are when
 they follow a number
other than "one" (including, oddly enough, "zero").
 Chinese has no such rules, and so has just the one
phrase where English
 has two. But, no problem, you can have this one Chinese phrase appear
 as the
translation for the two English phrases in the "zh" gettext
 lexicon for your program.

Emboldened by this, you dive into the second phrase that your software
 needs to output: "Your query
matched 10 files in 4 directories.". You notice
 that if you want to treat phrases as indivisible, as the
gettext
 manual wisely advises, you need four cases now, instead of two, to
 cover the permutations of
singular and plural on the two items,
 $dir_count and $file_count. So you try this:

 printf($file_count == 1 ?
 ($directory_count == 1 ?
 gettext("Your query matched %g file in %g directory.") :
 gettext("Your query matched %g file in %g directories.")) :
 ($directory_count == 1 ?
 gettext("Your query matched %g files in %g directory.") :
 gettext("Your query matched %g files in %g directories.")),
 $file_count, $directory_count,
);

(The case of "1 file in 2 [or more] directories" could, I suppose,
 occur in the case of symlinking or
something of the sort.)

It occurs to you that this is not the prettiest code you've ever
 written, but this seems the way to go.
You mail off to the
 translators asking for translations for these four cases. The
 Chinese guy replies
with the one phrase that these all translate to in
 Chinese, and that phrase has two "%g"s in it, as it

Perl version 5.8.8 documentation - Locale::Maketext::TPJ13

Page 3http://perldoc.perl.org

should -- but
 there's a problem. He translates it word-for-word back: "In %g
 directories contains %g
files match your query." The %g
 slots are in an order reverse to what they are in English. You wonder

how you'll get gettext to handle that.

But you put it aside for the moment, and optimistically hope that the
 other translators won't have this
problem, and that their languages
 will be better behaved -- i.e., that they will be just like English.

But the Arabic translator is the next to write back. First off, your
 code for "I scanned %g directory." or
"I scanned %g directories."
 assumes there's only singular or plural. But, to use linguistic
 jargon again,
Arabic has grammatical number, like English (but unlike
 Chinese), but it's a three-term category:
singular, dual, and plural.
 In other words, the way you say "directory" depends on whether there's
 one
directory, or two of them, or more than two of them. Your
 test of ($directory == 1) no longer
does the job. And it means
 that where English's grammatical category of number necessitates
 only
the two permutations of the first sentence based on "directory
 [singular]" and "directories [plural]",
Arabic has three -- and,
 worse, in the second sentence ("Your query matched %g file in %g

directory."), where English has four, Arabic has nine. You sense
 an unwelcome, exponential trend
taking shape.

Your Italian translator emails you back and says that "I searched 0
 directories" (a possible English
output of your program) is stilted,
 and if you think that's fine English, that's your problem, but that just
will not do in the language of Dante. He insists that where
 $directory_count is 0, your program should
produce the Italian text
 for "I didn't scan any directories.". And ditto for "I didn't
 match any files in any
directories", although he says the last part
 about "in any directories" should probably just be left off.

You wonder how you'll get gettext to handle this; to accomodate the
 ways Arabic, Chinese, and Italian
deal with numbers in just these few
 very simple phrases, you need to write code that will ask gettext
for
 different queries depending on whether the numerical values in
 question are 1, 2, more than 2, or
in some cases 0, and you still haven't
 figured out the problem with the different word order in Chinese.

Then your Russian translator calls on the phone, to personally tell
 you the bad news about how really
unpleasant your life is about to
 become:

Russian, like German or Latin, is an inflectional language; that is, nouns
 and adjectives have to take
endings that depend on their case
 (i.e., nominative, accusative, genitive, etc...) -- which is roughly a
matter of
 what role they have in syntax of the sentence --
 as well as on the grammatical gender (i.e.,
masculine, feminine, neuter)
 and number (i.e., singular or plural) of the noun, as well as on the

declension class of the noun. But unlike with most other inflected languages,
 putting a number-phrase
(like "ten" or "forty-three", or their Arabic
 numeral equivalents) in front of noun in Russian can change
the case and
 number that noun is, and therefore the endings you have to put on it.

He elaborates: In "I scanned %g directories", you'd expect
 "directories" to be in the accusative case
(since it is the direct
 object in the sentnce) and the plural number,
 except where $directory_count is 1,
then you'd expect the singular, of
 course. Just like Latin or German. But! Where $directory_count %

10 is 1 ("%" for modulo, remember), assuming $directory count is an
 integer, and except where
$directory_count % 100 is 11, "directories"
 is forced to become grammatically singular, which means
it gets the
 ending for the accusative singular... You begin to visualize the code
 it'd take to test for the
problem so far, and still work for Chinese
 and Arabic and Italian, and how many gettext items that'd
take, but
 he keeps going... But where $directory_count % 10 is 2, 3, or 4
 (except where
$directory_count % 100 is 12, 13, or 14), the word for
 "directories" is forced to be genitive singular --
which means another
 ending... The room begins to spin around you, slowly at first... But
 with all other
integer values, since "directory" is an inanimate
 noun, when preceded by a number and in the
nominative or accusative
 cases (as it is here, just your luck!), it does stay plural, but it is
 forced into
the genitive case -- yet another ending... And
 you never hear him get to the part about how you're
going to run into
 similar (but maybe subtly different) problems with other Slavic
 languages like Polish,
because the floor comes up to meet you, and you
 fade into unconsciousness.

The above cautionary tale relates how an attempt at localization can
 lead from programmer
consternation, to program obfuscation, to a need
 for sedation. But careful evaluation shows that your
choice of tools
 merely needed further consideration.

Perl version 5.8.8 documentation - Locale::Maketext::TPJ13

Page 4http://perldoc.perl.org

The Linguistic View
"It is more complicated than you think."

-- The Eighth Networking Truth, from RFC 1925

The field of Linguistics has expended a great deal of effort over the
 past century trying to find
grammatical patterns which hold across
 languages; it's been a constant process
 of people making
generalizations that should apply to all languages,
 only to find out that, all too often, these
generalizations fail --
 sometimes failing for just a few languages, sometimes whole classes of

languages, and sometimes nearly every language in the world except
 English. Broad statistical trends
are evident in what the "average
 language" is like as far as what its rules can look like, must look
 like,
and cannot look like. But the "average language" is just as
 unreal a concept as the "average person"
-- it runs up against the
 fact no language (or person) is, in fact, average. The wisdom of past

experience leads us to believe that any given language can do whatever
 it wants, in any order, with
appeal to any kind of grammatical
 categories wants -- case, number, tense, real or metaphoric

characteristics of the things that words refer to, arbitrary or
 predictable classifications of words based
on what endings or prefixes
 they can take, degree or means of certainty about the truth of
 statements
expressed, and so on, ad infinitum.

Mercifully, most localization tasks are a matter of finding ways to
 translate whole phrases, generally
sentences, where the context is
 relatively set, and where the only variation in content is usually
 in a
number being expressed -- as in the example sentences above.
 Translating specific, fully-formed
sentences is, in practice, fairly
 foolproof -- which is good, because that's what's in the phrasebooks

that so many tourists rely on. Now, a given phrase (whether in a
 phrasebook or in a gettext lexicon) in
one language might have a
 greater or lesser applicability than that phrase's translation into
 another
language -- for example, strictly speaking, in Arabic, the
 "your" in "Your query matched..." would take
a different form
 depending on whether the user is male or female; so the Arabic
 translation
"your[feminine] query" is applicable in fewer cases than
 the corresponding English phrase, which
doesn't distinguish the user's
 gender. (In practice, it's not feasable to have a program know the
 user's
gender, so the masculine "you" in Arabic is usually used, by
 default.)

But in general, such surprises are rare when entire sentences are
 being translated, especially when
the functional context is restricted
 to that of a computer interacting with a user either to convey a fact

or to prompt for a piece of information. So, for purposes of
 localization, translation by phrase
(generally by sentence) is both the
 simplest and the least problematic.

Breaking gettext
"It Has To Work."

-- First Networking Truth, RFC 1925

Consider that sentences in a tourist phrasebook are of two types: ones
 like "How do I get to the
marketplace?" that don't have any blanks to
 fill in, and ones like "How much do these ___ cost?",
where there's
 one or more blanks to fill in (and these are usually linked to a
 list of words that you can
put in that blank: "fish", "potatoes",
 "tomatoes", etc.) The ones with no blanks are no problem, but the

fill-in-the-blank ones may not be really straightforward. If it's a
 Swahili phrasebook, for example, the
authors probably didn't bother to
 tell you the complicated ways that the verb "cost" changes its

inflectional prefix depending on the noun you're putting in the blank.
 The trader in the marketplace will
still understand what you're saying if
 you say "how much do these potatoes cost?" with the wrong

inflectional prefix on "cost". After all, you can't speak proper Swahili, you're just a tourist. But while
tourists can be stupid, computers
 are supposed to be smart; the computer should be able to fill in the

blank, and still have the results be grammatical.

In other words, a phrasebook entry takes some values as parameters
 (the things that you fill in the
blank or blanks), and provides a value
 based on these parameters, where the way you get that final
value from
 the given values can, properly speaking, involve an arbitrarily
 complex series of
operations. (In the case of Chinese, it'd be not at
 all complex, at least in cases like the examples at
the beginning of
 this article; whereas in the case of Russian it'd be a rather complex
 series of
operations. And in some languages, the
 complexity could be spread around differently: while the act

Perl version 5.8.8 documentation - Locale::Maketext::TPJ13

Page 5http://perldoc.perl.org

of
 putting a number-expression in front of a noun phrase might not be
 complex by itself, it may
change how you have to, for example, inflect
 a verb elsewhere in the sentence. This is what in syntax
is called
 "long-distance dependencies".)

This talk of parameters and arbitrary complexity is just another way
 to say that an entry in a
phrasebook is what in a programming language
 would be called a "function". Just so you don't miss it,
this is the
 crux of this article: A phrase is a function; a phrasebook is a
 bunch of functions.

The reason that using gettext runs into walls (as in the above
 second-person horror story) is that
you're trying to use a string (or
 worse, a choice among a bunch of strings) to do what you really need
a
 function for -- which is futile. Preforming (s)printf interpolation
 on the strings which you get back
from gettext does allow you to do some
 common things passably well... sometimes... sort of; but, to
paraphrase
 what some people say about csh script programming, "it fools you
 into thinking you can
use it for real things, but you can't, and you
 don't discover this until you've already spent too much
time trying,
 and by then it's too late."

Replacing gettext
So, what needs to replace gettext is a system that supports lexicons
 of functions instead of lexicons of
strings. An entry in a lexicon
 from such a system should not look like this:

 "J'ai trouv\xE9 %g fichiers dans %g r\xE9pertoires"

[\xE9 is e-acute in Latin-1. Some pod renderers would
 scream if I used the actual character here. --
SB]

but instead like this, bearing in mind that this is just a first stab:

 sub I_found_X1_files_in_X2_directories {
 my($files, $dirs) = @_[0,1];
 $files = sprintf("%g %s", $files,
 $files == 1 ? 'fichier' : 'fichiers');
 $dirs = sprintf("%g %s", $dirs,
 $dirs == 1 ? "r\xE9pertoire" : "r\xE9pertoires");
 return "J'ai trouv\xE9 $files dans $dirs.";
 }

Now, there's no particularly obvious way to store anything but strings
 in a gettext lexicon; so it looks
like we just have to start over and
 make something better, from scratch. I call my shot at a

gettext-replacement system "Maketext", or, in CPAN terms,
 Locale::Maketext.

When designing Maketext, I chose to plan its main features in terms of
 "buzzword compliance". And
here are the buzzwords:

Buzzwords: Abstraction and Encapsulation
The complexity of the language you're trying to output a phrase in is
 entirely abstracted inside (and
encapsulated within) the Maketext module
 for that interface. When you call:

 print $lang->maketext("You have [quant,_1,piece] of new mail.",
 scalar(@messages));

you don't know (and in fact can't easily find out) whether this will
 involve lots of figuring, as in Russian
(if $lang is a handle to the
 Russian module), or relatively little, as in Chinese. That kind of
 abstraction
and encapsulation may encourage other pleasant buzzwords
 like modularization and stratification,
depending on what design
 decisions you make.

Perl version 5.8.8 documentation - Locale::Maketext::TPJ13

Page 6http://perldoc.perl.org

Buzzword: Isomorphism
"Isomorphism" means "having the same structure or form"; in discussions
 of program design, the
word takes on the special, specific meaning that
 your implementation of a solution to a problem has
the same
 structure as, say, an informal verbal description of the solution, or
 maybe of the problem
itself. Isomorphism is, all things considered,
 a good thing -- it's what problem-solving (and
solution-implementing)
 should look like.

What's wrong the with gettext-using code like this...

 printf($file_count == 1 ?
 ($directory_count == 1 ?
 "Your query matched %g file in %g directory." :
 "Your query matched %g file in %g directories.") :
 ($directory_count == 1 ?
 "Your query matched %g files in %g directory." :
 "Your query matched %g files in %g directories."),
 $file_count, $directory_count,
);

is first off that it's not well abstracted -- these ways of testing
 for grammatical number (as in the
expressions like foo == 1 ?
 singular_form : plural_form) should be abstracted to each
language
 module, since how you get grammatical number is language-specific.

But second off, it's not isomorphic -- the "solution" (i.e., the
 phrasebook entries) for Chinese maps
from these four English phrases to
 the one Chinese phrase that fits for all of them. In other words, the

informal solution would be "The way to say what you want in Chinese is
 with the one phrase 'For your
question, in Y directories you would
 find X files'" -- and so the implemented solution should be,

isomorphically, just a straightforward way to spit out that one
 phrase, with numerals properly
interpolated. It shouldn't have to map
 from the complexity of other languages to the simplicity of this
one.

Buzzword: Inheritance
There's a great deal of reuse possible for sharing of phrases between
 modules for related dialects, or
for sharing of auxiliary functions
 between related languages. (By "auxiliary functions", I mean

functions that don't produce phrase-text, but which, say, return an
 answer to "does this number
require a plural noun after it?". Such
 auxiliary functions would be used in the internal logic of functions
that actually do produce phrase-text.)

In the case of sharing phrases, consider that you have an interface
 already localized for American
English (probably by having been
 written with that as the native locale, but that's incidental).

Localizing it for UK English should, in practical terms, be just a
 matter of running it past a British
person with the instructions to
 indicate what few phrases would benefit from a change in spelling or

possibly minor rewording. In that case, you should be able to put in
 the UK English localization
module only those phrases that are
 UK-specific, and for all the rest, inherit from the American
 English
module. (And I expect this same situation would apply with
 Brazilian and Continental Portugese,
possbily with some very
 closely related languages like Czech and Slovak, and possibly with the

slightly different "versions" of written Mandarin Chinese, as I hear exist in
 Taiwan and mainland
China.)

As to sharing of auxiliary functions, consider the problem of Russian
 numbers from the beginning of
this article; obviously, you'd want to
 write only once the hairy code that, given a numeric value, would

return some specification of which case and number a given quanitified
 noun should use. But
suppose that you discover, while localizing an
 interface for, say, Ukranian (a Slavic language related
to Russian,
 spoken by several million people, many of whom would be relieved to
 find that your Web
site's or software's interface is available in
 their language), that the rules in Ukranian are the same as
in Russian
 for quantification, and probably for many other grammatical functions.
 While there may
well be no phrases in common between Russian and
 Ukranian, you could still choose to have the

Perl version 5.8.8 documentation - Locale::Maketext::TPJ13

Page 7http://perldoc.perl.org

Ukranian module inherit
 from the Russian module, just for the sake of inheriting all the
 various
grammatical methods. Or, probably better organizationally,
 you could move those functions to a
module called _E_Slavic or
 something, which Russian and Ukranian could inherit useful functions

from, but which would (presumably) provide no lexicon.

Buzzword: Concision
Okay, concision isn't a buzzword. But it should be, so I decree that
 as a new buzzword, "concision"
means that simple common things should
 be expressible in very few lines (or maybe even just a few
characters)
 of code -- call it a special case of "making simple things easy and
 hard things possible",
and see also the role it played in the
 MIDI::Simple language, discussed elsewhere in this issue
[TPJ#13].

Consider our first stab at an entry in our "phrasebook of functions":

 sub I_found_X1_files_in_X2_directories {
 my($files, $dirs) = @_[0,1];
 $files = sprintf("%g %s", $files,
 $files == 1 ? 'fichier' : 'fichiers');
 $dirs = sprintf("%g %s", $dirs,
 $dirs == 1 ? "r\xE9pertoire" : "r\xE9pertoires");
 return "J'ai trouv\xE9 $files dans $dirs.";
 }

You may sense that a lexicon (to use a non-committal catch-all term for a
 collection of things you
know how to say, regardless of whether they're
 phrases or words) consisting of functions expressed
as above would
 make for rather long-winded and repetitive code -- even if you wisely
 rewrote this to
have quantification (as we call adding a number
 expression to a noun phrase) be a function called
like:

 sub I_found_X1_files_in_X2_directories {
 my($files, $dirs) = @_[0,1];
 $files = quant($files, "fichier");
 $dirs = quant($dirs, "r\xE9pertoire");
 return "J'ai trouv\xE9 $files dans $dirs.";
 }

And you may also sense that you do not want to bother your translators
 with having to write Perl code
-- you'd much rather that they spend
 their very costly time on just translation. And this is to say

nothing of the near impossibility of finding a commercial translator
 who would know even simple Perl.

In a first-hack implementation of Maketext, each language-module's
 lexicon looked like this:

 %Lexicon = (
 "I found %g files in %g directories"
 => sub {
 my($files, $dirs) = @_[0,1];
 $files = quant($files, "fichier");
 $dirs = quant($dirs, "r\xE9pertoire");
 return "J'ai trouv\xE9 $files dans $dirs.";
 },
 ... and so on with other phrase => sub mappings ...
);

but I immediately went looking for some more concise way to basically
 denote the same
phrase-function -- a way that would also serve to
 concisely denote most phrase-functions in the
lexicon for most
 languages. After much time and even some actual thought, I decided on
 this system:

Perl version 5.8.8 documentation - Locale::Maketext::TPJ13

Page 8http://perldoc.perl.org

* Where a value in a %Lexicon hash is a contentful string instead of
 an anonymous sub (or,
conceivably, a coderef), it would be interpreted
 as a sort of shorthand expression of what the sub
does. When accessed
 for the first time in a session, it is parsed, turned into Perl code,
 and then eval'd
into an anonymous sub; then that sub replaces the
 original string in that lexicon. (That way, the work
of parsing and
 evaling the shorthand form for a given phrase is done no more than
 once per session.)

* Calls to maketext (as Maketext's main function is called) happen
 thru a "language session handle",
notionally very much like an IO
 handle, in that you open one at the start of the session, and use it
 for
"sending signals" to an object in order to have it return the text
 you want.

So, this:

 $lang->maketext("You have [quant,_1,piece] of new mail.",
 scalar(@messages));

basically means this: look in the lexicon for $lang (which may inherit
 from any number of other
lexicons), and find the function that we
 happen to associate with the string "You have [quant,_1,piece]
of new
 mail" (which is, and should be, a functioning "shorthand" for this
 function in the native locale --
English in this case). If you find
 such a function, call it with $lang as its first parameter (as if it
 were a
method), and then a copy of scalar(@messages) as its second,
 and then return that value. If that
function was found, but was in
 string shorthand instead of being a fully specified function, parse it
 and
make it into a function before calling it the first time.

* The shorthand uses code in brackets to indicate method calls that
 should be performed. A full
explanation is not in order here, but a
 few examples will suffice:

 "You have [quant,_1,piece] of new mail."

The above code is shorthand for, and will be interpreted as,
 this:

 sub {
 my $handle = $_[0];
 my(@params) = @_;
 return join '',
 "You have ",
 $handle->quant($params[1], 'piece'),
 "of new mail.";
 }

where "quant" is the name of a method you're using to quantify the
 noun "piece" with the number
$params[0].

A string with no brackety calls, like this:

 "Your search expression was malformed."

is somewhat of a degerate case, and just gets turned into:

 sub { return "Your search expression was malformed." }

However, not everything you can write in Perl code can be written in
 the above shorthand system --
not by a long shot. For example, consider
 the Italian translator from the beginning of this article, who
wanted
 the Italian for "I didn't find any files" as a special case, instead
 of "I found 0 files". That couldn't
be specified (at least not easily
 or simply) in our shorthand system, and it would have to be written
 out
in full, like this:

 sub { # pretend the English strings are in Italian
 my($handle, $files, $dirs) = @_[0,1,2];

Perl version 5.8.8 documentation - Locale::Maketext::TPJ13

Page 9http://perldoc.perl.org

 return "I didn't find any files" unless $files;
 return join '',
 "I found ",
 $handle->quant($files, 'file'),
 " in ",
 $handle->quant($dirs, 'directory'),
 ".";
 }

Next to a lexicon full of shorthand code, that sort of sticks out like a
 sore thumb -- but this is a special
case, after all; and at least
 it's possible, if not as concise as usual.

As to how you'd implement the Russian example from the beginning of
 the article, well, There's More
Than One Way To Do It, but it could be
 something like this (using English words for Russian, just so
you know
 what's going on):

 "I [quant,_1,directory,accusative] scanned."

This shifts the burden of complexity off to the quant method. That
 method's parameters are: the
numeric value it's going to use to
 quantify something; the Russian word it's going to quantify; and the

parameter "accusative", which you're using to mean that this
 sentence's syntax wants a noun in the
accusative case there, although
 that quantification method may have to overrule, for grammatical

reasons you may recall from the beginning of this article.

Now, the Russian quant method here is responsible not only for
 implementing the strange logic
necessary for figuring out how Russian
 number-phrases impose case and number on their
noun-phrases, but also
 for inflecting the Russian word for "directory". How that inflection
 is to be
carried out is no small issue, and among the solutions I've
 seen, some (like variations on a simple
lookup in a hash where all
 possible forms are provided for all necessary words) are
 straightforward
but can become cumbersome when you need to inflect
 more than a few dozen words; and other
solutions (like using
 algorithms to model the inflections, storing only root forms and
 irregularities) can
involve more overhead than is justifiable for
 all but the largest lexicons.

Mercifully, this design decision becomes crucial only in the hairiest
 of inflected languages, of which
Russian is by no means the worst case
 scenario, but is worse than most. Most languages have
simpler
 inflection systems; for example, in English or Swahili, there are
 generally no more than two
possible inflected forms for a given noun
 ("error/errors"; "kosa/makosa"), and the
 rules for producing
these forms are fairly simple -- or at least,
 simple rules can be formulated that work for most words,
and you can
 then treat the exceptions as just "irregular", at least relative to
 your ad hoc rules. A
simpler inflection system (simpler rules, fewer
 forms) means that design decisions are less crucial to
maintaining
 sanity, whereas the same decisions could incur
 overhead-versus-scalability problems in
languages like Russian. It
 may also be likely that code (possibly in Perl, as with
 Lingua::EN::Inflect,
for English nouns) has already
 been written for the language in question, whether simple or complex.

Moreover, a third possibility may even be simpler than anything
 discussed above: "Just require that all
possible (or at least
 applicable) forms be provided in the call to the given language's quant
 method,
as in:"

 "I found [quant,_1,file,files]."

That way, quant just has to chose which form it needs, without having
 to look up or generate anything.
While possibly not optimal for
 Russian, this should work well for most other languages, where

quantification is not as complicated an operation.

The Devil in the Details
There's plenty more to Maketext than described above -- for example,
 there's the details of how
language tags ("en-US", "i-pwn", "fi",
 etc.) or locale IDs ("en_US") interact with actual module naming

Perl version 5.8.8 documentation - Locale::Maketext::TPJ13

Page 10http://perldoc.perl.org

("BogoQuery/Locale/en_us.pm"), and what magic can ensue; there's the
 details of how to record (and
possibly negotiate) what character
 encoding Maketext will return text in (UTF8? Latin-1? KOI8?).
There's
 the interesting fact that Maketext is for localization, but nowhere
 actually has a "use
locale;" anywhere in it. For the curious,
 there's the somewhat frightening details of how I actually

implement something like data inheritance so that searches across
 modules' %Lexicon hashes can
parallel how Perl implements method
 inheritance.

And, most importantly, there's all the practical details of how to
 actually go about deriving from
Maketext so you can use it for your
 interfaces, and the various tools and conventions for starting out
and
 maintaining individual language modules.

That is all covered in the documentation for Locale::Maketext and the
 modules that come with it,
available in CPAN. After having read this
 article, which covers the why's of Maketext, the
documentation,
 which covers the how's of it, should be quite straightfoward.

The Proof in the Pudding: Localizing Web Sites
Maketext and gettext have a notable difference: gettext is in C,
 accessible thru C library calls,
whereas Maketext is in Perl, and
 really can't work without a Perl interpreter (although I suppose

something like it could be written for C). Accidents of history (and
 not necessarily lucky ones) have
made C++ the most common language for
 the implementation of applications like word processors,
Web browsers,
 and even many in-house applications like custom query systems. Current
 conditions
make it somewhat unlikely that the next one of any of these
 kinds of applications will be written in
Perl, albeit clearly more for
 reasons of custom and inertia than out of consideration of what is the
 right
tool for the job.

However, other accidents of history have made Perl a well-accepted
 language for design of
server-side programs (generally in CGI form)
 for Web site interfaces. Localization of static pages in
Web sites is
 trivial, feasable either with simple language-negotiation features in
 servers like Apache,
or with some kind of server-side inclusions of
 language-appropriate text into layout templates.
However, I think
 that the localization of Perl-based search systems (or other kinds of
 dynamic
content) in Web sites, be they public or access-restricted,
 is where Maketext will see the greatest use.

I presume that it would be only the exceptional Web site that gets
 localized for English and Chinese
and Italian and Arabic and Russian, to recall the languages from the beginning of this
 article -- to say
nothing of German, Spanish, French, Japanese,
 Finnish, and Hindi, to name a few languages that
benefit from large
 numbers of programmers or Web viewers or both.

However, the ever-increasing internationalization of the Web (whether
 measured in terms of amount
of content, of numbers of content writers
 or programmers, or of size of content audiences) makes it
increasingly
 likely that the interface to the average Web-based dynamic content
 service will be
localized for two or maybe three languages. It is my
 hope that Maketext will make that task as simple
as possible, and will
 remove previous barriers to localization for languages dissimilar to
 English.

 __END__

Sean M. Burke (sburke@cpan.org) has a Master's in linguistics
 from Northwestern University; he
specializes in language technology.
 Jordan Lachler (lachler@unm.edu) is a PhD student in the
Department of
 Linguistics at the University of New Mexico; he specializes in
 morphology and
pedagogy of North American native languages.

References
Alvestrand, Harald Tveit. 1995. RFC 1766: Tags for the
 Identification of Languages.
ftp://ftp.isi.edu/in-notes/rfc1766.txt
 [Now see RFC 3066.]

Callon, Ross, editor. 1996. RFC 1925: The Twelve
 Networking Truths.
ftp://ftp.isi.edu/in-notes/rfc1925.txt

Drepper, Ulrich, Peter Miller,
 and François Pinard. 1995-2001. GNU gettext. Available in

Perl version 5.8.8 documentation - Locale::Maketext::TPJ13

Page 11http://perldoc.perl.org

ftp://prep.ai.mit.edu/pub/gnu/, with
 extensive docs in the distribution tarball. [Since
 I wrote
this article in 1998, I now see that the
 gettext docs are now trying more to come to terms with
 plurality.
Whether useful conclusions have come from it
 is another question altogether. -- SMB, May 2001]

Forbes, Nevill. 1964. Russian Grammar. Third Edition, revised
 by J. C. Dumbreck. Oxford University
Press.

