
Perl version 5.8.8 documentation - Test::Harness::TAP

Page 1http://perldoc.perl.org

NAME
Test::Harness::TAP - Documentation for the TAP format

SYNOPSIS
TAP, the Test Anything Protocol, is Perl's simple text-based interface
 between testing modules such
as Test::More and the test harness
 Test::Harness.

TODO
Exit code of the process.

THE TAP FORMAT
TAP's general format is:

 1..N
 ok 1 Description # Directive
 # Diagnostic

 ok 47 Description
 ok 48 Description
 more tests....

For example, a test file's output might look like:

 1..4
 ok 1 - Input file opened
 not ok 2 - First line of the input valid
 ok 3 - Read the rest of the file
 not ok 4 - Summarized correctly # TODO Not written yet

HARNESS BEHAVIOR
In this document, the "harness" is any program analyzing TAP output.
 Typically this will be Perl's
prove program, or the underlying Test::Harness::runtests subroutine.

A harness must only read TAP output from standard output and not
 from standard error. Lines written
to standard output matching /^(not)?ok\b/ must be interpreted as test lines. All other
 lines must
not be considered test output.

TESTS LINES AND THE PLAN
The plan

The plan tells how many tests will be run, or how many tests have
 run. It's a check that the test file
hasn't stopped prematurely.
 It must appear once, whether at the beginning or end of the output.

The plan is usually the first line of TAP output and it specifies how
 many test points are to follow. For
example,

 1..10

means you plan on running 10 tests. This is a safeguard in case your test
 file dies silently in the
middle of its run. The plan is optional but if
 there is a plan before the test points it must be the first
non-diagnostic
 line output by the test file.

In certain instances a test file may not know how many test points
 it will ultimately be running. In this
case the plan can be the last
 non-diagnostic line in the output.

The plan cannot appear in the middle of the output, nor can it appear more
 than once.

Perl version 5.8.8 documentation - Test::Harness::TAP

Page 2http://perldoc.perl.org

The test line
The core of TAP is the test line. A test file prints one test line test
 point executed. There must be at
least one test line in TAP output. Each
 test line comprises the following elements:

* ok or not ok

This tells whether the test point passed or failed. It must be
 at the beginning of the line. /^not
 ok/ indicates a failed test
 point. /^ok/ is a successful test point. This is the only mandatory

part of the line.

Note that unlike the Directives below, ok and not ok are
 case-sensitive.

* Test number

TAP expects the ok or not ok to be followed by a test point
 number. If there is no number
the harness must maintain
 its own counter until the script supplies test numbers again. So
 the
following test output

 1..6
 not ok
 ok
 not ok
 ok
 ok

has five tests. The sixth is missing. Test::Harness will generate

 FAILED tests 1, 3, 6
 Failed 3/6 tests, 50.00% okay

* Description

Any text after the test number but before a # is the description of
 the test point.

 ok 42 this is the description of the test

Descriptions should not begin with a digit so that they are not confused
 with the test point
number.

The harness may do whatever it wants with the description.

* Directive

The test point may include a directive, following a hash on the
 test line. There are currently
two directives allowed: TODO and SKIP. These are discussed below.

To summarize:

* ok/not ok (required)

* Test number (recommended)

* Description (recommended)

* Directive (only when necessary)

DIRECTIVES
Directives are special notes that follow a # on the test line.
 Only two are currently defined: TODO and
SKIP. Note that
 these two keywords are not case-sensitive.

TODO tests
If the directive starts with # TODO, the test is counted as a
 todo test, and the text after TODO is the
explanation.

 not ok 13 # TODO bend space and time

Perl version 5.8.8 documentation - Test::Harness::TAP

Page 3http://perldoc.perl.org

Note that if the TODO has an explanation it must be separated from TODO by a space.

These tests represent a feature to be implemented or a bug to be fixed
 and act as something of an
executable "things to do" list. They are not expected to succeed. Should a todo test point begin
succeeding,
 the harness should report it as a bonus. This indicates that whatever
 you were supposed
to do has been done and you should promote this to a
 normal test point.

Skipping tests
If the directive starts with # SKIP, the test is counted as having
 been skipped. If the whole test file
succeeds, the count of skipped
 tests is included in the generated output. The harness should report

the text after # SKIP\S*\s+ as a reason for skipping.

 ok 23 # skip Insufficient flogiston pressure.

Similarly, one can include an explanation in a plan line,
 emitted if the test file is skipped completely:

 1..0 # Skipped: WWW::Mechanize not installed

OTHER LINES
Bail out!

As an emergency measure a test script can decide that further tests
 are useless (e.g. missing
dependencies) and testing should stop
 immediately. In that case the test script prints the magic words

 Bail out!

to standard output. Any message after these words must be displayed
 by the interpreter as the
reason why testing must be stopped, as
 in

 Bail out! MySQL is not running.

Diagnostics
Additional information may be put into the testing output on separate
 lines. Diagnostic lines should
begin with a #, which the harness must
 ignore, at least as far as analyzing the test results. The
harness is
 free, however, to display the diagnostics. Typically diagnostics are
 used to provide
information about the environment in which test file is
 running, or to delineate a group of tests.

 ...
 ok 18 - Closed database connection
 # End of database section.
 # This starts the network part of the test.
 # Daemon started on port 2112
 ok 19 - Opened socket
 ...
 ok 47 - Closed socket
 # End of network tests

Anything else
Any output line that is not a plan, a test line or a diagnostic is
 incorrect. How a harness handles the
incorrect line is undefined.
 Test::Harness silently ignores incorrect lines, but will become more

stringent in the future.

EXAMPLES
All names, places, and events depicted in any example are wholly
 fictitious and bear no resemblance
to, connection with, or relation to any
 real entity. Any such similarity is purely coincidental,
unintentional,
 and unintended.

Perl version 5.8.8 documentation - Test::Harness::TAP

Page 4http://perldoc.perl.org

Common with explanation
The following TAP listing declares that six tests follow as well as
 provides handy feedback as to what
the test is about to do. All six
 tests pass.

 1..6
 #
 # Create a new Board and Tile, then place
 # the Tile onto the board.
 #
 ok 1 - The object isa Board
 ok 2 - Board size is zero
 ok 3 - The object isa Tile
 ok 4 - Get possible places to put the Tile
 ok 5 - Placing the tile produces no error
 ok 6 - Board size is 1

Unknown amount and failures
This hypothetical test program ensures that a handful of servers are
 online and network-accessible.
Because it retrieves the hypothetical
 servers from a database, it doesn't know exactly how many
servers it
 will need to ping. Thus, the test count is declared at the bottom after
 all the test points have
run. Also, two of the tests fail.

 ok 1 - retrieving servers from the database
 # need to ping 6 servers
 ok 2 - pinged diamond
 ok 3 - pinged ruby
 not ok 4 - pinged saphire
 ok 5 - pinged onyx
 not ok 6 - pinged quartz
 ok 7 - pinged gold
 1..7

Giving up
This listing reports that a pile of tests are going to be run. However,
 the first test fails, reportedly
because a connection to the database
 could not be established. The program decided that continuing
was
 pointless and exited.

 1..573
 not ok 1 - database handle
 Bail out! Couldn't connect to database.

Skipping a few
The following listing plans on running 5 tests. However, our program
 decided to not run tests 2 thru 5
at all. To properly report this,
 the tests are marked as being skipped.

 1..5
 ok 1 - approved operating system
 # $^0 is solaris
 ok 2 - # SKIP no /sys directory
 ok 3 - # SKIP no /sys directory
 ok 4 - # SKIP no /sys directory
 ok 5 - # SKIP no /sys directory

Perl version 5.8.8 documentation - Test::Harness::TAP

Page 5http://perldoc.perl.org

Skipping everything
This listing shows that the entire listing is a skip. No tests were run.

 1..0 # skip because English-to-French translator isn't installed

Got spare tuits?
The following example reports that four tests are run and the last two
 tests failed. However, because
the failing tests are marked as things
 to do later, they are considered successes. Thus, a harness
should report
 this entire listing as a success.

 1..4
 ok 1 - Creating test program
 ok 2 - Test program runs, no error
 not ok 3 - infinite loop # TODO halting problem unsolved
 not ok 4 - infinite loop 2 # TODO halting problem unsolved

Creative liberties
This listing shows an alternate output where the test numbers aren't
 provided. The test also reports
the state of a ficticious board game in
 diagnostic form. Finally, the test count is reported at the end.

 ok - created Board
 ok
 ok
 ok
 ok
 ok
 ok
 ok
 # +------+------+------+------+
 # | |16G | |05C |
 # | |G N C | |C C G |
 # | | G | | C +|
 # +------+------+------+------+
 # |10C |01G | |03C |
 # |R N G |G A G | |C C C |
 # | R | G | | C +|
 # +------+------+------+------+
 # | |01G |17C |00C |
 # | |G A G |G N R |R N R |
 # | | G | R | G |
 # +------+------+------+------+
 ok - board has 7 tiles + starter tile
 1..9

AUTHORS
Andy Lester, based on the original Test::Harness documentation by Michael Schwern.

ACKNOWLEDGEMENTS
Thanks to
 Pete Krawczyk,
 Paul Johnson,
 Ian Langworth
 and Nik Clayton
 for help and contributions on
this document.

The basis for the TAP format was created by Larry Wall in the
 original test script for Perl 1. Tim Bunce
and Andreas Koenig
 developed it further with their modifications to Test::Harness.

Perl version 5.8.8 documentation - Test::Harness::TAP

Page 6http://perldoc.perl.org

COPYRIGHT
Copyright 2003-2005 by
 Michael G Schwern <schwern@pobox.com>,
 Andy Lester
<andy@petdance.com>.

This program is free software; you can redistribute it and/or
 modify it under the same terms as Perl
itself.

See http://www.perl.com/perl/misc/Artistic.html.

