
Perl version 5.8.8 documentation - Text::Wrap

Page 1http://perldoc.perl.org

NAME
Text::Wrap - line wrapping to form simple paragraphs

SYNOPSIS
Example 1

	 use Text::Wrap

	 $initial_tab = "\t";	 # Tab before first line
	 $subsequent_tab = "";	 # All other lines flush left

	 print wrap($initial_tab, $subsequent_tab, @text);
	 print fill($initial_tab, $subsequent_tab, @text);

	 $lines = wrap($initial_tab, $subsequent_tab, @text);

	 @paragraphs = fill($initial_tab, $subsequent_tab, @text);

Example 2

	 use Text::Wrap qw(wrap $columns $huge);

	 $columns = 132;		 # Wrap at 132 characters
	 $huge = 'die';
	 $huge = 'wrap';
	 $huge = 'overflow';

Example 3

	 use Text::Wrap

	 $Text::Wrap::columns = 72;
	 print wrap('', '', @text);

DESCRIPTION
Text::Wrap::wrap() is a very simple paragraph formatter. It formats a
 single paragraph at a time
by breaking lines at word boundries.
 Indentation is controlled for the first line ($initial_tab) and
 all
subsequent lines ($subsequent_tab) independently. Please note: $initial_tab and
$subsequent_tab are the literal strings that will
 be used: it is unlikley you would want to pass in a
number.

Text::Wrap::fill() is a simple multi-paragraph formatter. It formats
 each paragraph separately and then
joins them together when it's done. It
 will destroy any whitespace in the original text. It breaks text into
paragraphs by looking for whitespace after a newline. In other respects
 it acts like wrap().

OVERRIDES
Text::Wrap::wrap() has a number of variables that control its behavior.
 Because other modules
might be using Text::Wrap::wrap() it is suggested
 that you leave these variables alone! If you
can't do that, then use local($Text::Wrap::VARIABLE) = YOURVALUE when you change the

values so that the original value is restored. This local() trick
 will not work if you import the variable
into your own namespace.

Lines are wrapped at $Text::Wrap::columns columns. $Text::Wrap::columns
 should be set
to the full width of your output device. In fact,
 every resulting line will have length of no more than

Perl version 5.8.8 documentation - Text::Wrap

Page 2http://perldoc.perl.org

$columns - 1.

It is possible to control which characters terminate words by
 modifying $Text::Wrap::break. Set
this to a string such as '[\s:]' (to break before spaces or colons) or a pre-compiled regexp
 such as
qr/[\s']/ (to break before spaces or apostrophes). The
 default is simply '\s'; that is, words are
terminated by spaces.
 (This means, among other things, that trailing punctuation such as
 full stops or
commas stay with the word they are "attached" to.)

Beginner note: In example 2, above $columns is imported into
 the local namespace, and set locally.
In example 3, $Text::Wrap::columns is set in its own namespace without importing it.

Text::Wrap::wrap() starts its work by expanding all the tabs in its
 input into spaces. The last
thing it does it to turn spaces back
 into tabs. If you do not want tabs in your results, set
$Text::Wrap::unexpand to a false value. Likewise if you do not
 want to use 8-character tabstops,
set $Text::Wrap::tabstop to
 the number of characters you do want for your tabstops.

If you want to separate your lines with something other than \n
 then set
$Text::Wrap::separator to your preference. This replaces
 all newlines with
$Text::Wrap::separator. If you just to preserve
 existing newlines but add new breaks with
something else, set $Text::Wrap::separator2 instead.

When words that are longer than $columns are encountered, they
 are broken up. wrap() adds a
"\n" at column $columns.
 This behavior can be overridden by setting $huge to
 'die' or to 'overflow'.
When set to 'die', large words will cause die() to be called. When set to 'overflow', large words will
be
 left intact.

Historical notes: 'die' used to be the default value of $huge. Now, 'wrap' is the default value.

EXAMPLE
	 print wrap("\t","","This is a bit of text that forms
		 a normal book-style paragraph");

LICENSE
David Muir Sharnoff <muir@idiom.com> with help from Tim Pierce and
 many many others. Copyright
(C) 1996-2002 David Muir Sharnoff. This module may be modified, used, copied, and redistributed at

your own risk. Publicly redistributed modified versions must use a different name.

