
Perl version 5.8.8 documentation - Time::Local

Page 1http://perldoc.perl.org

NAME
Time::Local - efficiently compute time from local and GMT time

SYNOPSIS
 $time = timelocal($sec,$min,$hour,$mday,$mon,$year);
 $time = timegm($sec,$min,$hour,$mday,$mon,$year);

DESCRIPTION
These routines are the inverse of built-in perl functions localtime()
 and gmtime(). They accept a date
as a six-element array, and return
 the corresponding time(2) value in seconds since the system epoch
(Midnight, January 1, 1970 GMT on Unix, for example). This value can
 be positive or negative, though
POSIX only requires support for
 positive values, so dates before the system's epoch may not work on

all operating systems.

It is worth drawing particular attention to the expected ranges for
 the values provided. The value for
the day of the month is the actual day
 (ie 1..31), while the month is the number of months since
January (0..11).
 This is consistent with the values returned from localtime() and gmtime().

The timelocal() and timegm() functions perform range checking on the
 input $sec, $min, $hour,
$mday, and $mon values by default. If you'd
 rather they didn't, you can explicitly import the
timelocal_nocheck()
 and timegm_nocheck() functions.

	 use Time::Local 'timelocal_nocheck';

	 {
	 # The 365th day of 1999
	 print scalar localtime timelocal_nocheck 0,0,0,365,0,99;

	 # The twenty thousandth day since 1970
	 print scalar localtime timelocal_nocheck 0,0,0,20000,0,70;

	 # And even the 10,000,000th second since 1999!
	 print scalar localtime timelocal_nocheck 10000000,0,0,1,0,99;
	 }

Your mileage may vary when trying these with minutes and hours,
 and it doesn't work at all for
months.

Strictly speaking, the year should also be specified in a form consistent
 with localtime(), i.e. the offset
from 1900.
 In order to make the interpretation of the year easier for humans,
 however, who are more
accustomed to seeing years as two-digit or four-digit
 values, the following conventions are followed:

Years greater than 999 are interpreted as being the actual year,
 rather than the offset from
1900. Thus, 1964 would indicate the year
 Martin Luther King won the Nobel prize, not the year
3864.

Years in the range 100..999 are interpreted as offset from 1900, so that 112 indicates 2012.
This rule also applies to years less than zero
 (but see note below regarding date range).

Years in the range 0..99 are interpreted as shorthand for years in the
 rolling "current century,"
defined as 50 years on either side of the current
 year. Thus, today, in 1999, 0 would refer to
2000, and 45 to 2045,
 but 55 would refer to 1955. Twenty years from now, 55 would instead
refer
 to 2055. This is messy, but matches the way people currently think about
 two digit dates.
Whenever possible, use an absolute four digit year instead.

The scheme above allows interpretation of a wide range of dates, particularly
 if 4-digit years are used.

Perl version 5.8.8 documentation - Time::Local

Page 2http://perldoc.perl.org

Please note, however, that the range of dates that can be actually be handled
 depends on the size of
an integer (time_t) on a given platform. Currently, this is 32 bits for most systems, yielding an
approximate range from Dec 1901 to Jan 2038.

Both timelocal() and timegm() croak if given dates outside the supported
 range.

Ambiguous Local Times (DST)
Because of DST changes, there are many time zones where the same local
 time occurs for two
different GMT times on the same day. For example,
 in the "Europe/Paris" time zone, the local time of
2001-10-28 02:30:00
 can represent either 2001-10-28 00:30:00 GMT, or 2001-10-28
 01:30:00 GMT.

When given an ambiguous local time, the timelocal() function should
 always return the epoch for the
earlier of the two possible GMT
 times.

Non-Existent Local Times (DST)
When a DST change causes a locale clock to skip one hour forward,
 there will be an hour's worth of
local times that don't exist. Again,
 for the "Europe/Paris" time zone, the local clock jumped from

2001-03-25 01:59:59 to 2001-03-25 03:00:00.

If the timelocal() function is given a non-existent local time, it
 will simply return an epoch value for the
time one hour later.

Negative Epoch Values
Negative epoch (time_t) values are not officially supported by the
 POSIX standards, so this module's
tests do not test them. On some
 systems, they are known not to work. These include MacOS
(pre-OSX)
 and Win32.

On systems which do support negative epoch values, this module should
 be able to cope with dates
before the start of the epoch, down the
 minimum value of time_t for the system.

IMPLEMENTATION
These routines are quite efficient and yet are always guaranteed to agree
 with localtime() and
gmtime(). We manage this by caching the start times
 of any months we've seen before. If we know
the start time of the month,
 we can always calculate any time within the month. The start times
 are
calculated using a mathematical formula. Unlike other algorithms
 that do multiple calls to gmtime().

timelocal() is implemented using the same cache. We just assume that we're
 translating a GMT time,
and then fudge it when we're done for the timezone
 and daylight savings arguments. Note that the
timezone is evaluated for
 each date because countries occasionally change their official timezones.

Assuming that localtime() corrects for these changes, this routine will
 also be correct.

BUGS
The whole scheme for interpreting two-digit years can be considered a bug.

SUPPORT
Support for this module is provided via the datetime@perl.org
 email list. See http://lists.perl.org/ for
more details.

Please submit bugs using the RT system at rt.cpan.org, or as a last
 resort, to the datetime@perl.org
list.

AUTHOR
This module is based on a Perl 4 library, timelocal.pl, that was
 included with Perl 4.036, and was most
likely written by Tom
 Christiansen.

The current version was written by Graham Barr.

It is now being maintained separately from the Perl core by Dave
 Rolsky, <autarch@urth.org>.

