
Perl version 5.8.8 documentation - bignum

Page 1http://perldoc.perl.org

NAME
bignum - Transparent BigNumber support for Perl

SYNOPSIS
 use bignum;

 $x = 2 + 4.5,"\n";			 # BigFloat 6.5
 print 2 ** 512 * 0.1,"\n";		 # really is what you think it is
 print inf * inf,"\n";			 # prints inf
 print NaN * 3,"\n";			 # prints NaN

DESCRIPTION
All operators (including basic math operations) are overloaded. Integer and
 floating-point constants
are created as proper BigInts or BigFloats,
 respectively.

If you do

 use bignum;

at the top of your script, Math::BigFloat and Math::BigInt will be loaded
 and any constant number will
be converted to an object (Math::BigFloat for
 floats like 3.1415 and Math::BigInt for integers like
1234).

So, the following line:

 $x = 1234;

creates actually a Math::BigInt and stores a reference to in $x.
 This happens transparently and behind
your back, so to speak.

You can see this with the following:

 perl -Mbignum -le 'print ref(1234)'

Don't worry if it says Math::BigInt::Lite, bignum and friends will use Lite
 if it is installed since it is faster
for some operations. It will be
 automatically upgraded to BigInt whenever neccessary:

 perl -Mbignum -le 'print ref(2**255)'

This also means it is a bad idea to check for some specific package, since
 the actual contents of $x
might be something unexpected. Due to the
 transparent way of bignum ref() should not be
neccessary, anyway.

Since Math::BigInt and BigFloat also overload the normal math operations,
 the following line will still
work:

 perl -Mbignum -le 'print ref(1234+1234)'

Since numbers are actually objects, you can call all the usual methods from
 BigInt/BigFloat on them.
This even works to some extent on expressions:

 perl -Mbignum -le '$x = 1234; print $x->bdec()'
 perl -Mbignum -le 'print 1234->binc();'
 perl -Mbignum -le 'print 1234->binc->badd(6);'
 perl -Mbignum -le 'print +(1234)->binc()'

Perl version 5.8.8 documentation - bignum

Page 2http://perldoc.perl.org

(Note that print doesn't do what you expect if the expression starts with
 '(' hence the +)

You can even chain the operations together as usual:

 perl -Mbignum -le 'print 1234->binc->badd(6);'
 1241

Under bignum (or bigint or bigrat), Perl will "upgrade" the numbers
 appropriately. This means that:

 perl -Mbignum -le 'print 1234+4.5'
 1238.5

will work correctly. These mixed cases don't do always work when using
 Math::BigInt or
Math::BigFloat alone, or at least not in the way normal Perl
 scalars work.

If you do want to work with large integers like under use integer;, try use bigint;:

 perl -Mbigint -le 'print 1234.5+4.5'
 1238

There is also use bigrat; which gives you big rationals:

 perl -Mbigrat -le 'print 1234+4.1'
 12381/10

The entire upgrading/downgrading is still experimental and might not work
 as you expect or may even
have bugs.

You might get errors like this:

 Can't use an undefined value as an ARRAY reference at
 /usr/local/lib/perl5/5.8.0/Math/BigInt/Calc.pm line 864

This means somewhere a routine got a BigFloat/Lite but expected a BigInt (or
 vice versa) and the
upgrade/downgrad path was missing. This is a bug, please
 report it so that we can fix it.

You might consider using just Math::BigInt or Math::BigFloat, since they
 allow you finer control over
what get's done in which module/space. For
 instance, simple loop counters will be Math::BigInts
under use bignum; and
 this is slower than keeping them as Perl scalars:

 perl -Mbignum -le 'for ($i = 0; $i < 10; $i++) { print ref($i); }'

Please note the following does not work as expected (prints nothing), since
 overloading of '..' is not
yet possible in Perl (as of v5.8.0):

 perl -Mbignum -le 'for (1..2) { print ref($_); }'

Options
bignum recognizes some options that can be passed while loading it via use.
 The options can
(currently) be either a single letter form, or the long form.
 The following options exist:

a or accuracy

This sets the accuracy for all math operations. The argument must be greater
 than or equal to
zero. See Math::BigInt's bround() function for details.

	 perl -Mbignum=a,50 -le 'print sqrt(20)'

Perl version 5.8.8 documentation - bignum

Page 3http://perldoc.perl.org

p or precision

This sets the precision for all math operations. The argument can be any
 integer. Negative values
mean a fixed number of digits after the dot, while
 a positive value rounds to this digit left from the
dot. 0 or 1 mean round to
 integer. See Math::BigInt's bfround() function for details.

	 perl -Mbignum=p,-50 -le 'print sqrt(20)'

t or trace

This enables a trace mode and is primarily for debugging bignum or
 Math::BigInt/Math::BigFloat.

l or lib

Load a different math lib, see MATH LIBRARY.

	 perl -Mbignum=l,GMP -e 'print 2 ** 512'

Currently there is no way to specify more than one library on the command
 line. This will be
hopefully fixed soon ;)

v or version

This prints out the name and version of all modules used and then exits.

	 perl -Mbignum=v

Methods
Beside import() and AUTOLOAD() there are only a few other methods.

Since all numbers are now objects, you can use all functions that are part of
 the BigInt or BigFloat
API. It is wise to use only the bxxx() notation, and not
 the fxxx() notation, though. This makes it
possible that the underlying object
 might morph into a different class than BigFloat.

Caveat
But a warning is in order. When using the following to make a copy of a number,
 only a shallow copy
will be made.

 $x = 9; $y = $x;
 $x = $y = 7;

If you want to make a real copy, use the following:

 $y = $x->copy();

Using the copy or the original with overloaded math is okay, e.g. the
 following work:

 $x = 9; $y = $x;
 print $x + 1, " ", $y,"\n"; # prints 10 9

but calling any method that modifies the number directly will result in both the original and the copy
beeing destroyed:

 $x = 9; $y = $x;
 print $x->badd(1), " ", $y,"\n"; # prints 10 10

 $x = 9; $y = $x;
 print $x->binc(1), " ", $y,"\n"; # prints 10 10

 $x = 9; $y = $x;
 print $x->bmul(2), " ", $y,"\n"; # prints 18 18

Using methods that do not modify, but testthe contents works:

 $x = 9; $y = $x;

Perl version 5.8.8 documentation - bignum

Page 4http://perldoc.perl.org

 $z = 9 if $x->is_zero(); # works fine

See the documentation about the copy constructor and = in overload, as
 well as the documentation in
BigInt for further details.

inf()

A shortcut to return Math::BigInt->binf(). Usefull because Perl does not always
 handle bareword
inf properly.

NaN()

A shortcut to return Math::BigInt->bnan(). Usefull because Perl does not always
 handle bareword
NaN properly.

upgrade()

Return the class that numbers are upgraded to, is in fact returning $Math::BigInt::upgrade.

MATH LIBRARY
Math with the numbers is done (by default) by a module called
 Math::BigInt::Calc. This is equivalent to
saying:

	 use bignum lib => 'Calc';

You can change this by using:

	 use bignum lib => 'BitVect';

The following would first try to find Math::BigInt::Foo, then
 Math::BigInt::Bar, and when this also fails,
revert to Math::BigInt::Calc:

	 use bignum lib => 'Foo,Math::BigInt::Bar';

Please see respective module documentation for further details.

INTERNAL FORMAT
The numbers are stored as objects, and their internals might change at anytime,
 especially between
math operations. The objects also might belong to different
 classes, like Math::BigInt, or
Math::BigFLoat. Mixing them together, even
 with normal scalars is not extraordinary, but normal and
expected.

You should not depend on the internal format, all accesses must go through
 accessor methods. E.g.
looking at $x->{sign} is not a bright idea since there
 is no guaranty that the object in question has
such a hashkey, nor is a hash
 underneath at all.

SIGN
The sign is either '+', '-', 'NaN', '+inf' or '-inf' and stored seperately.
 You can access it with the sign()
method.

A sign of 'NaN' is used to represent the result when input arguments are not
 numbers or as a result of
0/0. '+inf' and '-inf' represent plus respectively
 minus infinity. You will get '+inf' when dividing a positive
number by 0, and
 '-inf' when dividing any negative number by 0.

MODULES USED
bignum is just a thin wrapper around various modules of the Math::BigInt
 family. Think of it as the
head of the family, who runs the shop, and orders
 the others to do the work.

The following modules are currently used by bignum:

	 Math::BigInt::Lite	 (for speed, and only if it is loadable)
	 Math::BigInt
	 Math::BigFloat

Perl version 5.8.8 documentation - bignum

Page 5http://perldoc.perl.org

EXAMPLES
Some cool command line examples to impress the Python crowd ;)

	 perl -Mbignum -le 'print sqrt(33)'
	 perl -Mbignum -le 'print 2*255'
	 perl -Mbignum -le 'print 4.5+2*255'
	 perl -Mbignum -le 'print 3/7 + 5/7 + 8/3'
	 perl -Mbignum -le 'print 123->is_odd()'
	 perl -Mbignum -le 'print log(2)'
	 perl -Mbignum -le 'print 2 ** 0.5'
	 perl -Mbignum=a,65 -le 'print 2 ** 0.2'

LICENSE
This program is free software; you may redistribute it and/or modify it under
 the same terms as Perl
itself.

SEE ALSO
Especially bigrat as in perl -Mbigrat -le 'print 1/3+1/4'.

Math::BigFloat, Math::BigInt, Math::BigRat and Math::Big as well
 as Math::BigInt::BitVect,
Math::BigInt::Pari and Math::BigInt::GMP.

AUTHORS
(C) by Tels http://bloodgate.com/ in early 2002, 2003.

