
Perl version 5.8.8 documentation - perl571delta

Page 1http://perldoc.perl.org

NAME
perl571delta - what's new for perl v5.7.1

DESCRIPTION
This document describes differences between the 5.7.0 release and the
 5.7.1 release.

(To view the differences between the 5.6.0 release and the 5.7.0
 release, see perl570delta.)

Security Vulnerability Closed
(This change was already made in 5.7.0 but bears repeating here.)

A potential security vulnerability in the optional suidperl component
 of Perl was identified in August
2000. suidperl is neither built nor
 installed by default. As of April 2001 the only known vulnerable

platform is Linux, most likely all Linux distributions. CERT and
 various vendors and distributors have
been alerted about the vulnerability.
 See
http://www.cpan.org/src/5.0/sperl-2000-08-05/sperl-2000-08-05.txt
 for more information.

The problem was caused by Perl trying to report a suspected security
 exploit attempt using an
external program, /bin/mail. On Linux
 platforms the /bin/mail program had an undocumented feature
which
 when combined with suidperl gave access to a root shell, resulting in
 a serious compromise
instead of reporting the exploit attempt. If you
 don't have /bin/mail, or if you have 'safe setuid scripts',
or if
 suidperl is not installed, you are safe.

The exploit attempt reporting feature has been completely removed from
 all the Perl 5.7 releases (and
will be gone also from the maintenance
 release 5.6.1), so that particular vulnerability isn't there
anymore.
 However, further security vulnerabilities are, unfortunately, always
 possible. The suidperl
code is being reviewed and if deemed too risky
 to continue to be supported, it may be completely
removed from future
 releases. In any case, suidperl should only be used by security
 experts who
know exactly what they are doing and why they are using
 suidperl instead of some other solution such
as sudo
 (see http://www.courtesan.com/sudo/).

Incompatible Changes
Although "you shouldn't do that", it was possible to write code that
 depends on Perl's hashed
key order (Data::Dumper does this). The new
 algorithm "One-at-a-Time" produces a different
hashed key order.
 More details are in Performance Enhancements.

The list of filenames from glob() (or <...>) is now by default sorted
 alphabetically to be
csh-compliant. (bsd_glob() does still sort platform
 natively, ASCII or EBCDIC, unless
GLOB_ALPHASORT is specified.)

Core Enhancements
AUTOLOAD Is Now Lvaluable

AUTOLOAD is now lvaluable, meaning that you can add the :lvalue attribute
 to AUTOLOAD
subroutines and you can assign to the AUTOLOAD return value.

PerlIO is Now The Default
IO is now by default done via PerlIO rather than system's "stdio".
 PerlIO allows "layers" to be
"pushed" onto a file handle to alter the
 handle's behaviour. Layers can be specified at open
time via 3-arg
 form of open:

 open($fh,'>:crlf :utf8', $path) || ...

or on already opened handles via extended binmode:

 binmode($fh,':encoding(iso-8859-7)');

The built-in layers are: unix (low level read/write), stdio (as in
 previous Perls), perlio
(re-implementation of stdio buffering in a
 portable manner), crlf (does CRLF <=> "\n"

Perl version 5.8.8 documentation - perl571delta

Page 2http://perldoc.perl.org

translation as on Win32,
 but available on any platform). A mmap layer may be available if

platform supports it (mostly UNIXes).

Layers to be applied by default may be specified via the 'open' pragma.

See Installation and Configuration Improvements for the effects
 of PerlIO on your architecture
name.

File handles can be marked as accepting Perl's internal encoding of Unicode
 (UTF-8 or
UTF-EBCDIC depending on platform) by a pseudo layer ":utf8" :

 open($fh,">:utf8","Uni.txt");

Note for EBCDIC users: the pseudo layer ":utf8" is erroneously named
 for you since it's not
UTF-8 what you will be getting but instead
 UTF-EBCDIC. See perlunicode, utf8, and

http://www.unicode.org/unicode/reports/tr16/ for more information.
 In future releases this
naming may change.

File handles can translate character encodings from/to Perl's internal
 Unicode form on
read/write via the ":encoding()" layer.

File handles can be opened to "in memory" files held in Perl scalars via:

 open($fh,'>', \$variable) || ...

Anonymous temporary files are available without need to
 'use FileHandle' or other module via

 open($fh,"+>", undef) || ...

That is a literal undef, not an undefined value.

The list form of open is now implemented for pipes (at least on UNIX):

 open($fh,"-|", 'cat', '/etc/motd')

creates a pipe, and runs the equivalent of exec('cat', '/etc/motd') in
 the child process.

The following builtin functions are now overridable: chop(), chomp(),
 each(), keys(), pop(),
push(), shift(), splice(), unshift().

Formats now support zero-padded decimal fields.

Perl now tries internally to use integer values in numeric conversions
 and basic arithmetics (+
- * /) if the arguments are integers, and
 tries also to keep the results stored internally as
integers.
 This change leads into often slightly faster and always less lossy
 arithmetics.
(Previously Perl always preferred floating point numbers
 in its math.)

The printf() and sprintf() now support parameter reordering using the %\d+\$ and *\d+\$
syntaxes. For example

 print "%2\$s %1\$s\n", "foo", "bar";

will print "bar foo\n"; This feature helps in writing
 internationalised software.

Unicode in general should be now much more usable. Unicode can be
 used in hash keys,
Unicode in regular expressions should work now,
 Unicode in tr/// should work now (though tr///
seems to be a
 particularly tricky to get right, so you have been warned)

The Unicode Character Database coming with Perl has been upgraded
 to Unicode 3.1. For
more information, see http://www.unicode.org/ ,
 and
http://www.unicode.org/unicode/reports/tr27/

For developers interested in enhancing Perl's Unicode capabilities:
 almost all the UCD files
are included with the Perl distribution in
 the lib/unicode subdirectory. The most notable

Perl version 5.8.8 documentation - perl571delta

Page 3http://perldoc.perl.org

omission, for space
 considerations, is the Unihan database.

The Unicode character classes \p{Blank} and \p{SpacePerl} have been
 added. "Blank" is like
C isblank(), that is, it contains only
 "horizontal whitespace" (the space character is, the
newline isn't),
 and the "SpacePerl" is the Unicode equivalent of \s (\p{Space}
 isn't, since that
includes the vertical tabulator character, whereas \s doesn't.)

Signals Are Now Safe
Perl used to be fragile in that signals arriving at inopportune moments
 could corrupt Perl's internal
state.

Modules and Pragmata
New Modules

B::Concise, by Stephen McCamant, is a new compiler backend for
 walking the Perl syntax
tree, printing concise info about ops.
 The output is highly customisable.

See B::Concise for more information.

Class::ISA, by Sean Burke, for reporting the search path for a
 class's ISA tree, has been
added.

See Class::ISA for more information.

Cwd has now a split personality: if possible, an extension is used,
 (this will hopefully be both
faster and more secure and robust) but
 if not possible, the familiar Perl library implementation
is used.

Digest, a frontend module for calculating digests (checksums),
 from Gisle Aas, has been
added.

See Digest for more information.

Digest::MD5 for calculating MD5 digests (checksums), by Gisle Aas,
 has been added.

 use Digest::MD5 'md5_hex';

 $digest = md5_hex("Thirsty Camel");

 print $digest, "\n"; # 01d19d9d2045e005c3f1b80e8b164de1

NOTE: the MD5 backward compatibility module is deliberately not
 included since its use is
discouraged.

See Digest::MD5 for more information.

Encode, by Nick Ing-Simmons, provides a mechanism to translate
 between different character
encodings. Support for Unicode,
 ISO-8859-*, ASCII, CP*, KOI8-R, and three variants of
EBCDIC are
 compiled in to the module. Several other encodings (like Japanese,
 Chinese, and
MacIntosh encodings) are included and will be loaded at
 runtime.

Any encoding supported by Encode module is also available to the
 ":encoding()" layer if
PerlIO is used.

See Encode for more information.

Filter::Simple is an easy-to-use frontend to Filter::Util::Call,
 from Damian Conway.

 # in MyFilter.pm:

 package MyFilter;

 use Filter::Simple sub {
 while (my ($from, $to) = splice @_, 0, 2) {

Perl version 5.8.8 documentation - perl571delta

Page 4http://perldoc.perl.org

 s/$from/$to/g;
 }
 };

 1;

 # in user's code:

 use MyFilter qr/red/ => 'green';

 print "red\n"; # this code is filtered, will print "green\n"
 print "bored\n"; # this code is filtered, will print "bogreen\n"

 no MyFilter;

 print "red\n"; # this code is not filtered, will print "red\n"

See Filter::Simple for more information.

Filter::Util::Call, by Paul Marquess, provides you with the
 framework to write Source Filters in
Perl. For most uses
 the frontend Filter::Simple is to be preferred.
 See Filter::Util::Call for more
information.

Locale::Constants, Locale::Country, Locale::Currency, and Locale::Language,
 from Neil
Bowers, have been added. They provide the codes for various
 locale standards, such as "fr"
for France, "usd" for US Dollar, and
 "jp" for Japanese.

 use Locale::Country;

 $country = code2country('jp'); # $country gets
'Japan'
 $code = country2code('Norway'); # $code gets 'no'

See Locale::Constants, Locale::Country, Locale::Currency,
 and Locale::Language for more
information.

MIME::Base64, by Gisle Aas, allows you to encode data in base64.

 use MIME::Base64;

 $encoded = encode_base64('Aladdin:open sesame');
 $decoded = decode_base64($encoded);

 print $encoded, "\n"; # "QWxhZGRpbjpvcGVuIHNlc2FtZQ=="

See MIME::Base64 for more information.

MIME::QuotedPrint, by Gisle Aas, allows you to encode data in
 quoted-printable encoding.

 use MIME::QuotedPrint;

 $encoded = encode_qp("Smiley in Unicode: \x{263a}");
 $decoded = decode_qp($encoded);

 print $encoded, "\n"; # "Smiley in Unicode: =263A"

MIME::QuotedPrint has been enhanced to provide the basic methods
 necessary to use it with
PerlIO::Via as in :

 use MIME::QuotedPrint;

Perl version 5.8.8 documentation - perl571delta

Page 5http://perldoc.perl.org

 open($fh,">Via(MIME::QuotedPrint)",$path)

See MIME::QuotedPrint for more information.

PerlIO::Scalar, by Nick Ing-Simmons, provides the implementation of
 IO to "in memory" Perl
scalars as discussed above. It also serves as
 an example of a loadable layer. Other future
possibilities include
 PerlIO::Array and PerlIO::Code. See PerlIO::Scalar for more
 information.

PerlIO::Via, by Nick Ing-Simmons, acts as a PerlIO layer and wraps
 PerlIO layer functionality
provided by a class (typically implemented
 in perl code).

 use MIME::QuotedPrint;
 open($fh,">Via(MIME::QuotedPrint)",$path)

This will automatically convert everything output to $fh
 to Quoted-Printable. See PerlIO::Via
for more information.

Pod::Text::Overstrike, by Joe Smith, has been added.
 It converts POD data to formatted
overstrike text.
 See Pod::Text::Overstrike for more information.

Switch from Damian Conway has been added. Just by saying

 use Switch;

you have switch and case available in Perl.

 use Switch;

 switch ($val) {

		 case 1		 { print "number 1" }
		 case "a"	 { print "string a" }
		 case [1..10,42]	 { print "number in list" }
		 case (@array)	 { print "number in list" }
		 case /\w+/	 { print "pattern" }
		 case qr/\w+/	 { print "pattern" }
		 case (%hash)	 { print "entry in hash" }
		 case (\%hash)	 { print "entry in hash" }
		 case (\&sub)	 { print "arg to subroutine" }
		 else		 { print "previous case not true" }
 }

See Switch for more information.

Text::Balanced from Damian Conway has been added, for
 extracting delimited text sequences
from strings.

 use Text::Balanced 'extract_delimited';

 ($a, $b) = extract_delimited("'never say never', he never said",
"'", '');

$a will be "'never say never'", $b will be ', he never said'.

In addition to extract_delimited() there are also extract_bracketed(),
 extract_quotelike(),
extract_codeblock(), extract_variable(),
 extract_tagged(), extract_multiple(),
gen_delimited_pat(), and
 gen_extract_tagged(). With these you can implement rather
advanced
 parsing algorithms. See Text::Balanced for more information.

Tie::RefHash::Nestable, by Edward Avis, allows storing hash references
 (unlike the standard
Tie::RefHash) The module is contained within
 Tie::RefHash.

Perl version 5.8.8 documentation - perl571delta

Page 6http://perldoc.perl.org

XS::Typemap, by Tim Jenness, is a test extension that exercises XS
 typemaps. Nothing gets
installed but for extension writers the code
 is worth studying.

Updated And Improved Modules and Pragmata
B::Deparse should be now more robust. It still far from providing a full
 round trip for any
random piece of Perl code, though, and is under active
 development: expect more robustness
in 5.7.2.

Class::Struct can now define the classes in compile time.

Math::BigFloat has undergone much fixing, and in addition the fmod()
 function now supports
modulus operations.

(The fixed Math::BigFloat module is also available in CPAN for those
 who can't upgrade their
Perl: http://www.cpan.org/authors/id/J/JP/JPEACOCK/)

Devel::Peek now has an interface for the Perl memory statistics
 (this works only if you are
using perl's malloc, and if you have
 compiled with debugging).

IO::Socket has now atmark() method, which returns true if the socket
 is positioned at the
out-of-band mark. The method is also exportable
 as a sockatmark() function.

IO::Socket::INET has support for ReusePort option (if your platform
 supports it). The Reuse
option now has an alias, ReuseAddr. For clarity
 you may want to prefer ReuseAddr.

Net::Ping has been enhanced. There is now "external" protocol which
 uses Net::Ping::External
module which runs external ping(1) and parses
 the output. An alpha version of
Net::Ping::External is available in
 CPAN and in 5.7.2 the Net::Ping::External may be integrated
to Perl.

The open pragma allows layers other than ":raw" and ":crlf" when
 using PerlIO.

POSIX::sigaction() is now much more flexible and robust.
 You can now install coderef
handlers, 'DEFAULT', and 'IGNORE'
 handlers, installing new handlers was not atomic.

The Test module has been significantly enhanced. Its use is
 greatly recommended for module
writers.

The utf8:: name space (as in the pragma) provides various
 Perl-callable functions to provide
low level access to Perl's
 internal Unicode representation. At the moment only length()
 has
been implemented.

The following modules have been upgraded from the versions at CPAN:
 CPAN, CGI, DB_File,
File::Temp, Getopt::Long, Pod::Man, Pod::Text,
 Storable, Text-Tabs+Wrap.

Performance Enhancements
Hashes now use Bob Jenkins "One-at-a-Time" hashing key algorithm
 (
http://burtleburtle.net/bob/hash/doobs.html). This algorithm is
 reasonably fast while producing
a much better spread of values than
 the old hashing algorithm (originally by Chris Torek, later
tweaked by
 Ilya Zakharevich). Hash values output from the algorithm on a hash of
 all 3-char
printable ASCII keys comes much closer to passing the
 DIEHARD random number generation
tests. According to perlbench, this
 change has not affected the overall speed of Perl.

unshift() should now be noticeably faster.

Utility Changes
h2xs now produces template README.

s2p has been completely rewritten in Perl. (It is in fact a full
 implementation of sed in Perl.)

xsubpp now supports OUT keyword.

Perl version 5.8.8 documentation - perl571delta

Page 7http://perldoc.perl.org

New Documentation
perlclib

Internal replacements for standard C library functions.
 (Interesting only for extension writers and Perl
core hackers.)

perliol
Internals of PerlIO with layers.

README.aix
Documentation on compiling Perl on AIX has been added. AIX has
 several different C compilers and
getting the right patch level
 is essential. On install README.aix will be installed as perlaix.

README.bs2000
Documentation on compiling Perl on the POSIX-BC platform (an EBCDIC
 mainframe environment)
has been added.

This was formerly known as README.posix-bc but the name was considered
 to be too confusing (it
has nothing to do with the POSIX module or the
 POSIX standard). On install README.bs2000 will be
installed as perlbs2000.

README.macos
In perl 5.7.1 (and in the 5.6.1) the MacPerl sources have been
 synchronised with the standard Perl
sources. To compile MacPerl
 some additional steps are required, and this file documents those
 steps.
On install README.macos will be installed as perlmacos.

README.mpeix
The README.mpeix has been podified, which means that this information
 about compiling and using
Perl on the MPE/iX miniframe platform will
 be installed as perlmpeix.

README.solaris
README.solaris has been created and Solaris wisdom from elsewhere
 in the Perl documentation has
been collected there. On install
 README.solaris will be installed as perlsolaris.

README.vos
The README.vos has been podified, which means that this information
 about compiling and using
Perl on the Stratus VOS miniframe platform
 will be installed as perlvos.

Porting/repository.pod
Documentation on how to use the Perl source repository has been added.

Installation and Configuration Improvements
Because PerlIO is now the default on most platforms, "-perlio" doesn't
 get appended to the
$Config{archname} (also known as $^O) anymore.
 Instead, if you explicitly choose not to use
perlio (Configure command
 line option -Uuseperlio), you will get "-stdio" appended.

Another change related to the architecture name is that "-64all"
 (-Duse64bitall, or "maximally
64-bit") is appended only if your
 pointers are 64 bits wide. (To be exact, the use64bitall is
ignored.)

APPLLIB_EXP, a less-know configuration-time definition, has been
 documented. It can be
used to prepend site-specific directories
 to Perl's default search path (@INC), see INSTALL
for information.

Building Berkeley DB3 for compatibility modes for DB, NDBM, and ODBM
 has been
documented in INSTALL.

If you are on IRIX or Tru64 platforms, new profiling/debugging options
 have been added, see

Perl version 5.8.8 documentation - perl571delta

Page 8http://perldoc.perl.org

perlhack for more information about pixie and
 Third Degree.

New Or Improved Platforms
For the list of platforms known to support Perl,
 see "Supported Platforms" in perlport.

AIX dynamic loading should be now better supported.

After a long pause, AmigaOS has been verified to be happy with Perl.

EBCDIC platforms (z/OS, also known as OS/390, POSIX-BC, and VM/ESA)
 have been
regained. Many test suite tests still fail and the
 co-existence of Unicode and EBCDIC isn't
quite settled, but the
 situation is much better than with Perl 5.6. See perlos390, perlbs2000
(for POSIX-BC), and perlvmesa for more information.

Building perl with -Duseithreads or -Duse5005threads now works under
 HP-UX 10.20
(previously it only worked under 10.30 or later). You will
 need a thread library package
installed. See README.hpux.

Mac OS Classic (MacPerl has of course been available since
 perl 5.004 but now the source
code bases of standard Perl
 and MacPerl have been synchronised)

NCR MP-RAS is now supported.

NonStop-UX is now supported.

Amdahl UTS is now supported.

z/OS (formerly known as OS/390, formerly known as MVS OE) has now
 support for dynamic
loading. This is not selected by default,
 however, you must specify -Dusedl in the arguments
of Configure.

Generic Improvements
Configure no longer includes the DBM libraries (dbm, gdbm, db, ndbm)
 when building the Perl
binary. The only exception to this is SunOS 4.x,
 which needs them.

Some new Configure symbols, useful for extension writers:

d_cmsghdr

For struct cmsghdr.

d_fcntl_can_lock

Whether fcntl() can be used for file locking.

d_fsync

d_getitimer

d_getpagsz

For getpagesize(), though you should prefer
POSIX::sysconf(_SC_PAGE_SIZE))

d_msghdr_s

For struct msghdr.

need_va_copy

Whether one needs to use Perl_va_copy() to copy varargs.

d_readv

d_recvmsg

d_sendmsg

Perl version 5.8.8 documentation - perl571delta

Page 9http://perldoc.perl.org

sig_size

The number of elements in an array needed to hold all the available signals.

d_sockatmark

d_strtoq

d_u32align

Whether one needs to access character data aligned by U32 sized pointers.

d_ualarm

d_usleep

Removed Configure symbols: the PDP-11 memory model settings: huge,
 large, medium,
models.

SOCKS support is now much more robust.

If your file system supports symbolic links you can build Perl outside
 of the source directory by

	 mkdir perl/build/directory
	 cd perl/build/directory
	 sh /path/to/perl/source/Configure -Dmksymlinks ...

This will create in perl/build/directory a tree of symbolic links
 pointing to files in
/path/to/perl/source. The original files are left
 unaffected. After Configure has finished you can
just say

	 make all test

and Perl will be built and tested, all in perl/build/directory.

Selected Bug Fixes
Numerous memory leaks and uninitialized memory accesses have been hunted down.
 Most
importantly anonymous subs used to leak quite a bit.

chop(@list) in list context returned the characters chopped in
 reverse order. This has been
reversed to be in the right order.

The order of DESTROYs has been made more predictable.

mkdir() now ignores trailing slashes in the directory name,
 as mandated by POSIX.

Attributes (like :shared) didn't work with our().

The PERL5OPT environment variable (for passing command line arguments
 to Perl) didn't
work for more than a single group of options.

The tainting behaviour of sprintf() has been rationalized. It does
 not taint the result of floating
point formats anymore, making the
 behaviour consistent with that of string interpolation.

All but the first argument of the IO syswrite() method are now optional.

Tie::ARRAY SPLICE method was broken.

vec() now tries to work with characters <= 255 when possible, but it leaves
 higher character
values in place. In that case, if vec() was used to modify
 the string, it is no longer considered
to be utf8-encoded.

Platform Specific Changes and Fixes
Linux previously had problems related to sockaddrlen when using
 accept(), revcfrom() (in Perl:
recv()), getpeername(), and getsockname().

Perl version 5.8.8 documentation - perl571delta

Page 10http://perldoc.perl.org

Previously DYNIX/ptx had problems in its Configure probe for non-blocking I/O.

Windows

Borland C++ v5.5 is now a supported compiler that can build Perl.
 However,
the generated binaries continue to be incompatible with those
 generated by the
other supported compilers (GCC and Visual C++).

Win32::GetCwd() correctly returns C:\ instead of C: when at the drive root.

Other bugs in chdir() and Cwd::cwd() have also been fixed.

Duping socket handles with open(F, ">&MYSOCK") now works under Windows
9x.

HTML files will be installed in c:\perl\html instead of c:\perl\lib\pod\html

The makefiles now provide a single switch to bulk-enable all the features

enabled in ActiveState ActivePerl (a popular binary distribution).

New or Changed Diagnostics
Two new debugging options have been added: if you have compiled your
 Perl with debugging, you
can use the -DT and -DR options to trace
 tokenising and to add reference counts to displaying
variables,
 respectively.

If an attempt to use a (non-blessed) reference as an array index
 is made, a warning is given.

push @a; and unshift @a; (with no values to push or unshift)
 now give a warning. This
may be a problem for generated and evaled
 code.

Changed Internals
Some new APIs: ptr_table_clear(), ptr_table_free(), sv_setref_uv().
 For the full list of the
available APIs see perlapi.

dTHR and djSP have been obsoleted; the former removed (because it's
 a no-op) and the latter
replaced with dSP.

Perl now uses system malloc instead of Perl malloc on all 64-bit
 platforms, and even in some
not-always-64-bit platforms like AIX,
 IRIX, and Solaris. This change breaks backward
compatibility but
 Perl's malloc has problems with large address spaces and also the
 speed of
vendors' malloc is generally better in large address space
 machines (Perl's malloc is mostly
tuned for space).

New Tests
Many new tests have been added. The most notable is probably the
 lib/1_compile: it is very notable
because running it takes quite a
 long time -- it test compiles all the Perl modules in the distribution.

Please be patient.

Known Problems
Note that unlike other sections in this document (which describe
 changes since 5.7.0) this section is
cumulative containing known
 problems for all the 5.7 releases.

AIX vac 5.0.0.0 May Produce Buggy Code For Perl
The AIX C compiler vac version 5.0.0.0 may produce buggy code,
 resulting in few random tests
failing, but when the failing tests
 are run by hand, they succeed. We suggest upgrading to at least
 vac
version 5.0.1.0, that has been known to compile Perl correctly.
 "lslpp -L|grep vac.C" will tell you the
vac version.

Perl version 5.8.8 documentation - perl571delta

Page 11http://perldoc.perl.org

lib/ftmp-security tests warn 'system possibly insecure'
Don't panic. Read INSTALL 'make test' section instead.

lib/io_multihomed Fails In LP64-Configured HP-UX
The lib/io_multihomed test may hang in HP-UX if Perl has been
 configured to be 64-bit. Because
other 64-bit platforms do not hang in
 this test, HP-UX is suspect. All other tests pass in 64-bit HP-UX.
The
 test attempts to create and connect to "multihomed" sockets (sockets
 which have multiple IP
addresses).

Test lib/posix Subtest 9 Fails In LP64-Configured HP-UX
If perl is configured with -Duse64bitall, the successful result of the
 subtest 10 of lib/posix may arrive
before the successful result of the
 subtest 9, which confuses the test harness so much that it thinks
the
 subtest 9 failed.

lib/b test 19
The test fails on various platforms (PA64 and IA64 are known), but the
 exact cause is still being
investigated.

Linux With Sfio Fails op/misc Test 48
No known fix.

sigaction test 13 in VMS
The test is known to fail; whether it's because of VMS of because
 of faulty test is not known.

sprintf tests 129 and 130
The op/sprintf tests 129 and 130 are known to fail on some platforms.
 Examples include any platform
using sfio, and Compaq/Tandem's NonStop-UX.
 The failing platforms do not comply with the ANSI C
Standard, line
 19ff on page 134 of ANSI X3.159 1989 to be exact. (They produce
 something else than
"1" and "-1" when formatting 0.6 and -0.6 using
 the printf format "%.0f", most often they produce "0"
and "-0".)

Failure of Thread tests
The subtests 19 and 20 of lib/thr5005.t test are known to fail due to
 fundamental problems in the
5.005 threading implementation. These are
 not new failures--Perl 5.005_0x has the same bugs, but
didn't have
 these tests. (Note that support for 5.005-style threading remains
 experimental.)

Localising a Tied Variable Leaks Memory
 use Tie::Hash;
 tie my %tie_hash => 'Tie::StdHash';

 ...

 local($tie_hash{Foo}) = 1; # leaks

Code like the above is known to leak memory every time the local()
 is executed.

Self-tying of Arrays and Hashes Is Forbidden
Self-tying of arrays and hashes is broken in rather deep and
 hard-to-fix ways. As a stop-gap measure
to avoid people from getting
 frustrated at the mysterious results (core dumps, most often) it is
 for now
forbidden (you will get a fatal error even from an attempt).

Building Extensions Can Fail Because Of Largefiles
Some extensions like mod_perl are known to have issues with
 `largefiles', a change brought by Perl
5.6.0 in which file offsets
 default to 64 bits wide, where supported. Modules may fail to compile
 at all
or compile and work incorrectly. Currently there is no good
 solution for the problem, but Configure

Perl version 5.8.8 documentation - perl571delta

Page 12http://perldoc.perl.org

now provides appropriate
 non-largefile ccflags, ldflags, libswanted, and libs in the %Config
 hash (e.g.,
$Config{ccflags_nolargefiles}) so the extensions that are
 having problems can try configuring
themselves without the
 largefileness. This is admittedly not a clean solution, and the
 solution may not
even work at all. One potential failure is whether
 one can (or, if one can, whether it's a good idea) link
together at
 all binaries with different ideas about file offsets, all this is
 platform-dependent.

The Compiler Suite Is Still Experimental
The compiler suite is slowly getting better but is nowhere near
 working order yet.

Reporting Bugs
If you find what you think is a bug, you might check the articles
 recently posted to the
comp.lang.perl.misc newsgroup and the perl
 bug database at http://bugs.perl.org/ There may also be

information at http://www.perl.com/perl/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug
 program included with your
release. Be sure to trim your bug down
 to a tiny but sufficient test case. Your bug report, along with
the
 output of perl -V, will be sent off to perlbug@perl.org to be
 analysed by the Perl porting team.

SEE ALSO
The Changes file for exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

HISTORY
Written by Jarkko Hietaniemi <jhi@iki.fi>, with many contributions
 from The Perl Porters and Perl
Users submitting feedback and patches.

Send omissions or corrections to <perlbug@perl.org>.

