
Perl version 5.8.8 documentation - perl58delta

Page 1http://perldoc.perl.org

NAME
perl58delta - what is new for perl v5.8.0

DESCRIPTION
This document describes differences between the 5.6.0 release and
 the 5.8.0 release.

Many of the bug fixes in 5.8.0 were already seen in the 5.6.1
 maintenance release since the two
releases were kept closely
 coordinated (while 5.8.0 was still called 5.7.something).

Changes that were integrated into the 5.6.1 release are marked [561].
 Many of these changes have
been further developed since 5.6.1 was released,
 those are marked [561+].

You can see the list of changes in the 5.6.1 release (both from the
 5.005_03 release and the 5.6.0
release) by reading perl561delta.

Highlights In 5.8.0
Better Unicode support

New IO Implementation

New Thread Implementation

Better Numeric Accuracy

Safe Signals

Many New Modules

More Extensive Regression Testing

Incompatible Changes
Binary Incompatibility

Perl 5.8 is not binary compatible with earlier releases of Perl.

You have to recompile your XS modules.

(Pure Perl modules should continue to work.)

The major reason for the discontinuity is the new IO architecture
 called PerlIO. PerlIO is the default
configuration because without
 it many new features of Perl 5.8 cannot be used. In other words:
 you
just have to recompile your modules containing XS code, sorry
 about that.

In future releases of Perl, non-PerlIO aware XS modules may become
 completely unsupported. This
shouldn't be too difficult for module
 authors, however: PerlIO has been designed as a drop-in
replacement
 (at the source code level) for the stdio interface.

Depending on your platform, there are also other reasons why
 we decided to break binary
compatibility, please read on.

64-bit platforms and malloc
If your pointers are 64 bits wide, the Perl malloc is no longer being
 used because it does not work well
with 8-byte pointers. Also,
 usually the system mallocs on such platforms are much better optimized
 for
such large memory models than the Perl malloc. Some memory-hungry
 Perl applications like the PDL
don't work well with Perl's malloc.
 Finally, other applications than Perl (such as mod_perl) tend to
prefer
 the system malloc. Such platforms include Alpha and 64-bit HPPA,
 MIPS, PPC, and Sparc.

AIX Dynaloading
The AIX dynaloading now uses in AIX releases 4.3 and newer the native
 dlopen interface of AIX
instead of the old emulated interface. This
 change will probably break backward compatibility with
compiled
 modules. The change was made to make Perl more compliant with other
 applications like

Perl version 5.8.8 documentation - perl58delta

Page 2http://perldoc.perl.org

mod_perl which are using the AIX native interface.

Attributes for my variables now handled at run-time
The my EXPR : ATTRS syntax now applies variable attributes at
 run-time. (Subroutine and our
variables still get attributes applied
 at compile-time.) See attributes for additional details. In particular,

however, this allows variable attributes to be useful for tie interfaces,
 which was a deficiency of
earlier releases. Note that the new semantics
 doesn't work with the Attribute::Handlers module (as of
version 0.76).

Socket Extension Dynamic in VMS
The Socket extension is now dynamically loaded instead of being
 statically built in. This may or may
not be a problem with ancient
 TCP/IP stacks of VMS: we do not know since we weren't able to test

Perl in such configurations.

IEEE-format Floating Point Default on OpenVMS Alpha
Perl now uses IEEE format (T_FLOAT) as the default internal floating
 point format on OpenVMS
Alpha, potentially breaking binary compatibility
 with external libraries or existing data. G_FLOAT is still
available as
 a configuration option. The default on VAX (D_FLOAT) has not changed.

New Unicode Semantics (no more use utf8, almost)
Previously in Perl 5.6 to use Unicode one would say "use utf8" and
 then the operations (like string
concatenation) were Unicode-aware
 in that lexical scope.

This was found to be an inconvenient interface, and in Perl 5.8 the
 Unicode model has completely
changed: now the "Unicodeness" is bound
 to the data itself, and for most of the time "use utf8" is not
needed
 at all. The only remaining use of "use utf8" is when the Perl script
 itself has been written in the
UTF-8 encoding of Unicode. (UTF-8 has
 not been made the default since there are many Perl scripts
out there
 that are using various national eight-bit character sets, which would
 be illegal in UTF-8.)

See perluniintro for the explanation of the current model,
 and utf8 for the current use of the utf8
pragma.

New Unicode Properties
Unicode scripts are now supported. Scripts are similar to (and superior
 to) Unicode blocks. The
difference between scripts and blocks is that
 scripts are the glyphs used by a language or a group of
languages, while
 the blocks are more artificial groupings of (mostly) 256 characters based
 on the
Unicode numbering.

In general, scripts are more inclusive, but not universally so. For
 example, while the script Latin
includes all the Latin characters and
 their various diacritic-adorned versions, it does not include the
various
 punctuation or digits (since they are not solely Latin).

A number of other properties are now supported, including \p{L&}, \p{Any} \p{Assigned},
\p{Unassigned}, \p{Blank} [561] and \p{SpacePerl} [561] (along with their \P{...}
versions, of course).
 See perlunicode for details, and more additions.

The In or Is prefix to names used with the \p{...} and \P{...}
 are now almost always optional.
The only exception is that a In prefix
 is required to signify a Unicode block when a block name
conflicts with a
 script name. For example, \p{Tibetan} refers to the script, while \p{InTibetan}
refers to the block. When there is no name conflict, you
 can omit the In from the block name (e.g.
\p{BraillePatterns}), but
 to be safe, it's probably best to always use the In).

REF(...) Instead Of SCALAR(...)
A reference to a reference now stringifies as "REF(0x81485ec)" instead
 of "SCALAR(0x81485ec)" in
order to be more consistent with the return
 value of ref().

Perl version 5.8.8 documentation - perl58delta

Page 3http://perldoc.perl.org

pack/unpack D/F recycled
The undocumented pack/unpack template letters D/F have been recycled
 for better use: now they
stand for long double (if supported by the
 platform) and NV (Perl internal floating point type). (They
used
 to be aliases for d/f, but you never knew that.)

glob() now returns filenames in alphabetical order
The list of filenames from glob() (or <...>) is now by default sorted
 alphabetically to be csh-compliant
(which is what happened before
 in most UNIX platforms). (bsd_glob() does still sort platform
 natively,
ASCII or EBCDIC, unless GLOB_ALPHASORT is specified.) [561]

Deprecations
The semantics of bless(REF, REF) were unclear and until someone proves
 it to make some
sense, it is forbidden.

The obsolete chat2 library that should never have been allowed
 to escape the laboratory has
been decommissioned.

Using chdir("") or chdir(undef) instead of explicit chdir() is
 doubtful. A failure (think
chdir(some_function()) can lead into
 unintended chdir() to the home directory, therefore this
behaviour
 is deprecated.

The builtin dump() function has probably outlived most of its
 usefulness. The core-dumping
functionality will remain in future
 available as an explicit call to CORE::dump(), but in future

releases the behaviour of an unqualified dump() call may change.

The very dusty examples in the eg/ directory have been removed.
 Suggestions for new shiny
examples welcome but the main issue is that
 the examples need to be documented, tested
and (most importantly)
 maintained.

The (bogus) escape sequences \8 and \9 now give an optional warning
 ("Unrecognized
escape passed through"). There is no need to \-escape
 any \w character.

The *glob{FILEHANDLE} is deprecated, use *glob{IO} instead.

The package; syntax (package without an argument) has been
 deprecated. Its semantics
were never that clear and its
 implementation even less so. If you have used that feature to

disallow all but fully qualified variables, use strict; instead.

The unimplemented POSIX regex features [[.cc.]] and [[=c=]] are still
 recognised but now
cause fatal errors. The previous behaviour of
 ignoring them by default and warning if
requested was unacceptable
 since it, in a way, falsely promised that the features could be
used.

In future releases, non-PerlIO aware XS modules may become completely
 unsupported. Since
PerlIO is a drop-in replacement for stdio at the
 source code level, this shouldn't be that drastic
a change.

Previous versions of perl and some readings of some sections of Camel
 III implied that the
:raw "discipline" was the inverse of :crlf.
 Turning off "clrfness" is no longer enough to
make a stream truly
 binary. So the PerlIO :raw layer (or "discipline", to use the Camel
 book's
older terminology) is now formally defined as being equivalent
 to binmode(FH) - which is in
turn defined as doing whatever is
 necessary to pass each byte as-is without any translation. In
particular binmode(FH) - and hence :raw - will now turn off both
 CRLF and UTF-8 translation
and remove other layers (e.g. :encoding())
 which would modify byte stream.

The current user-visible implementation of pseudo-hashes (the weird
 use of the first array
element) is deprecated starting from Perl 5.8.0
 and will be removed in Perl 5.10.0, and the
feature will be
 implemented differently. Not only is the current interface rather
 ugly, but the
current implementation slows down normal array and hash
 use quite noticeably. The fields

Perl version 5.8.8 documentation - perl58delta

Page 4http://perldoc.perl.org

pragma interface will remain
 available. The restricted hashes interface is expected to
 be the
replacement interface (see Hash::Util). If your existing
 programs depends on the underlying
implementation, consider using Class::PseudoHash from CPAN.

The syntaxes @a->[...] and %h->{...} have now been deprecated.

After years of trying, suidperl is considered to be too complex to
 ever be considered truly
secure. The suidperl functionality is likely
 to be removed in a future release.

The 5.005 threads model (module Thread) is deprecated and expected
 to be removed in Perl
5.10. Multithreaded code should be migrated to
 the new ithreads model (see threads,
threads::shared and perlthrtut).

The long deprecated uppercase aliases for the string comparison
 operators (EQ, NE, LT, LE,
GE, GT) have now been removed.

The tr///C and tr///U features have been removed and will not return;
 the interface was a
mistake. Sorry about that. For similar
 functionality, see pack('U0', ...) and pack('C0', ...). [561]

Earlier Perls treated "sub foo (@bar)" as equivalent to "sub foo (@)".
 The prototypes are now
checked better at compile-time for invalid
 syntax. An optional warning is generated ("Illegal
character in
 prototype...") but this may be upgraded to a fatal error in a future
 release.

The exec LIST and system LIST operations now produce warnings on
 tainted data and in
some future release they will produce fatal errors.

The existing behaviour when localising tied arrays and hashes is wrong,
 and will be changed
in a future release, so do not rely on the existing
 behaviour. See Localising Tied Arrays and
Hashes Is Broken.

Core Enhancements
Unicode Overhaul

Unicode in general should be now much more usable than in Perl 5.6.0
 (or even in 5.6.1). Unicode
can be used in hash keys, Unicode in
 regular expressions should work now, Unicode in tr/// should
work now,
 Unicode in I/O should work now. See perluniintro for introduction
 and perlunicode for
details.

The Unicode Character Database coming with Perl has been upgraded
 to Unicode 3.2.0. For
more information, see http://www.unicode.org/ .
 [561+] (5.6.1 has UCD 3.0.1.)

For developers interested in enhancing Perl's Unicode capabilities:
 almost all the UCD files
are included with the Perl distribution in
 the lib/unicore subdirectory. The most notable
omission, for space
 considerations, is the Unihan database.

The properties \p{Blank} and \p{SpacePerl} have been added. "Blank" is like
 C isblank(), that
is, it contains only "horizontal whitespace" (the space
 character is, the newline isn't), and the
"SpacePerl" is the Unicode
 equivalent of \s (\p{Space} isn't, since that includes the vertical

tabulator character, whereas \s doesn't.)

See "New Unicode Properties" earlier in this document for additional
 information on changes
with Unicode properties.

PerlIO is Now The Default
IO is now by default done via PerlIO rather than system's "stdio".
 PerlIO allows "layers" to be
"pushed" onto a file handle to alter the
 handle's behaviour. Layers can be specified at open
time via 3-arg
 form of open:

 open($fh,'>:crlf :utf8', $path) || ...

or on already opened handles via extended binmode:

Perl version 5.8.8 documentation - perl58delta

Page 5http://perldoc.perl.org

 binmode($fh,':encoding(iso-8859-7)');

The built-in layers are: unix (low level read/write), stdio (as in
 previous Perls), perlio
(re-implementation of stdio buffering in a
 portable manner), crlf (does CRLF <=> "\n"
translation as on Win32,
 but available on any platform). A mmap layer may be available if

platform supports it (mostly UNIXes).

Layers to be applied by default may be specified via the 'open' pragma.

See Installation and Configuration Improvements for the effects
 of PerlIO on your architecture
name.

If your platform supports fork(), you can use the list form of open
 for pipes. For example:

 open KID_PS, "-|", "ps", "aux" or die $!;

forks the ps(1) command (without spawning a shell, as there are more
 than three arguments
to open()), and reads its standard output via the KID_PS filehandle. See perlipc.

File handles can be marked as accepting Perl's internal encoding of Unicode
 (UTF-8 or
UTF-EBCDIC depending on platform) by a pseudo layer ":utf8" :

 open($fh,">:utf8","Uni.txt");

Note for EBCDIC users: the pseudo layer ":utf8" is erroneously named
 for you since it's not
UTF-8 what you will be getting but instead
 UTF-EBCDIC. See perlunicode, utf8, and

http://www.unicode.org/unicode/reports/tr16/ for more information.
 In future releases this
naming may change. See perluniintro
 for more information about UTF-8.

If your environment variables (LC_ALL, LC_CTYPE, LANG) look like you
 want to use UTF-8
(any of the variables match /utf-?8/i), your
 STDIN, STDOUT, STDERR handles and the
default open layer (see open)
 are marked as UTF-8. (This feature, like other new features that
combine Unicode and I/O, work only if you are using PerlIO, but that's
 the default.)

Note that after this Perl really does assume that everything is UTF-8:
 for example if some
input handle is not, Perl will probably very soon
 complain about the input data like this
"Malformed UTF-8 ..." since
 any old eight-bit data is not legal UTF-8.

Note for code authors: if you want to enable your users to use UTF-8
 as their default encoding
but in your code still have eight-bit I/O streams
 (such as images or zip files), you need to
explicitly open() or binmode()
 with :bytes (see "open" in perlfunc and "binmode" in perlfunc),
or you
 can just use binmode(FH) (nice for pre-5.8.0 backward compatibility).

File handles can translate character encodings from/to Perl's internal
 Unicode form on
read/write via the ":encoding()" layer.

File handles can be opened to "in memory" files held in Perl scalars via:

 open($fh,'>', \$variable) || ...

Anonymous temporary files are available without need to
 'use FileHandle' or other module via

 open($fh,"+>", undef) || ...

That is a literal undef, not an undefined value.

ithreads
The new interpreter threads ("ithreads" for short) implementation of
 multithreading, by Arthur
Bergman, replaces the old "5.005 threads"
 implementation. In the ithreads model any data sharing
between
 threads must be explicit, as opposed to the model where data sharing
 was implicit. See
threads and threads::shared, and perlthrtut.

As a part of the ithreads implementation Perl will also use
 any necessary and detectable reentrant libc

Perl version 5.8.8 documentation - perl58delta

Page 6http://perldoc.perl.org

interfaces.

Restricted Hashes
A restricted hash is restricted to a certain set of keys, no keys
 outside the set can be added. Also
individual keys can be restricted
 so that the key cannot be deleted and the value cannot be changed.

No new syntax is involved: the Hash::Util module is the interface.

Safe Signals
Perl used to be fragile in that signals arriving at inopportune moments
 could corrupt Perl's internal
state. Now Perl postpones handling of
 signals until it's safe (between opcodes).

This change may have surprising side effects because signals no longer
 interrupt Perl instantly. Perl
will now first finish whatever it was
 doing, like finishing an internal operation (like sort()) or an
 external
operation (like an I/O operation), and only then look at any
 arrived signals (and before starting the
next operation). No more corrupt
 internal state since the current operation is always finished first,
 but
the signal may take more time to get heard. Note that breaking
 out from potentially blocking
operations should still work, though.

Understanding of Numbers
In general a lot of fixing has happened in the area of Perl's
 understanding of numbers, both integer
and floating point. Since in
 many systems the standard number parsing functions like strtoul()

and atof() seem to have bugs, Perl tries to work around their
 deficiencies. This results hopefully in
more accurate numbers.

Perl now tries internally to use integer values in numeric conversions
 and basic arithmetics (+ - * /) if
the arguments are integers, and
 tries also to keep the results stored internally as integers.
 This
change leads to often slightly faster and always less lossy
 arithmetics. (Previously Perl always
preferred floating point numbers
 in its math.)

Arrays now always interpolate into double-quoted strings [561]
In double-quoted strings, arrays now interpolate, no matter what. The
 behavior in earlier versions of
perl 5 was that arrays would interpolate
 into strings if the array had been mentioned before the string
was
 compiled, and otherwise Perl would raise a fatal compile-time error.
 In versions 5.000 through
5.003, the error was

 Literal @example now requires backslash

In versions 5.004_01 through 5.6.0, the error was

 In string, @example now must be written as \@example

The idea here was to get people into the habit of writing "fred\@example.com" when they wanted
a literal @ sign, just as
 they have always written "Give me back my \$5" when they wanted a

literal $ sign.

Starting with 5.6.1, when Perl now sees an @ sign in a
 double-quoted string, it always attempts to
interpolate an array,
 regardless of whether or not the array has been used or declared
 already. The
fatal error has been downgraded to an optional warning:

 Possible unintended interpolation of @example in string

This warns you that "fred@example.com" is going to turn into fred.com if you don't backslash the
@.
 See http://www.plover.com/~mjd/perl/at-error.html for more details
 about the history here.

Miscellaneous Changes
AUTOLOAD is now lvaluable, meaning that you can add the :lvalue attribute
 to AUTOLOAD
subroutines and you can assign to the AUTOLOAD return value.

Perl version 5.8.8 documentation - perl58delta

Page 7http://perldoc.perl.org

The $Config{byteorder} (and corresponding BYTEORDER in config.h) was
 previously wrong
in platforms if sizeof(long) was 4, but sizeof(IV)
 was 8. The byteorder was only sizeof(long)
bytes long (1234 or 4321),
 but now it is correctly sizeof(IV) bytes long, (12345678 or
87654321).
 (This problem didn't affect Windows platforms.)

Also, $Config{byteorder} is now computed dynamically--this is more
 robust with "fat binaries"
where an executable image contains binaries
 for more than one binary platform, and when
cross-compiling.

perl -d:Module=arg,arg,arg now works (previously one couldn't pass
 in multiple
arguments.)

do followed by a bareword now ensures that this bareword isn't
 a keyword (to avoid a bug
where do q(foo.pl) tried to call a
 subroutine called q). This means that for example
instead of do format() you must write do &format().

The builtin dump() now gives an optional warning dump() better written as
CORE::dump(),
 meaning that by default dump(...) is resolved as the builtin
 dump() which
dumps core and aborts, not as (possibly) user-defined sub dump. To call the latter, qualify the
call as &dump(...).
 (The whole dump() feature is to considered deprecated, and possibly

removed/changed in future releases.)

chomp() and chop() are now overridable. Note, however, that their
 prototype (as given by
prototype("CORE::chomp") is undefined,
 because it cannot be expressed and therefore
one cannot really write
 replacements to override these builtins.

END blocks are now run even if you exit/die in a BEGIN block.
 Internally, the execution of
END blocks is now controlled by
 PL_exit_flags & PERL_EXIT_DESTRUCT_END. This
enables the new
 behaviour for Perl embedders. This will default in 5.10. See perlembed.

Formats now support zero-padded decimal fields.

Although "you shouldn't do that", it was possible to write code that
 depends on Perl's hashed
key order (Data::Dumper does this). The new
 algorithm "One-at-a-Time" produces a different
hashed key order.
 More details are in Performance Enhancements.

lstat(FILEHANDLE) now gives a warning because the operation makes no sense.
 In future
releases this may become a fatal error.

Spurious syntax errors generated in certain situations, when glob()
 caused File::Glob to be
loaded for the first time, have been fixed. [561]

Lvalue subroutines can now return undef in list context. However,
 the lvalue subroutine
feature still remains experimental. [561+]

A lost warning "Can't declare ... dereference in my" has been
 restored (Perl had it earlier but it
became lost in later releases.)

A new special regular expression variable has been introduced: $^N, which contains the
most-recently closed group (submatch).

no Module; does not produce an error even if Module does not have an
 unimport() method.
This parallels the behavior of use vis-a-vis import. [561]

The numerical comparison operators return undef if either operand
 is a NaN. Previously the
behaviour was unspecified.

our can now have an experimental optional attribute unique that
 affects how global variables
are shared among multiple interpreters,
 see "our" in perlfunc.

The following builtin functions are now overridable: each(), keys(),
 pop(), push(), shift(),
splice(), unshift(). [561]

Perl version 5.8.8 documentation - perl58delta

Page 8http://perldoc.perl.org

pack() / unpack() can now group template letters with () and then
 apply repetition/count
modifiers on the groups.

pack() / unpack() can now process the Perl internal numeric types:
 IVs, UVs, NVs-- and
also long doubles, if supported by the platform.
 The template letters are j, J, F, and D.

pack('U0a*', ...) can now be used to force a string to UTF-8.

my __PACKAGE__ $obj now works. [561]

POSIX::sleep() now returns the number of unslept seconds
 (as the POSIX standard says), as
opposed to CORE::sleep() which
 returns the number of slept seconds.

printf() and sprintf() now support parameter reordering using the %\d+\$ and *\d+\$
syntaxes. For example

 printf "%2\$s %1\$s\n", "foo", "bar";

will print "bar foo\n". This feature helps in writing
 internationalised software, and in general
when the order
 of the parameters can vary.

The (\&) prototype now works properly. [561]

prototype(\[$@%&]) is now available to implicitly create references
 (useful for example if you
want to emulate the tie() interface).

A new command-line option, -t is available. It is the
 little brother of -T: instead of dying on
taint violations,
 lexical warnings are given. This is only meant as a temporary
 debugging
aid while securing the code of old legacy applications.
 This is not a substitute for -T.

In other taint news, the exec LIST and system LIST have now been
 considered too risky
(think exec @ARGV: it can start any program
 with any arguments), and now the said forms
cause a warning under
 lexical warnings. You should carefully launder the arguments to

guarantee their validity. In future releases of Perl the forms will
 become fatal errors so
consider starting laundering now.

Tied hash interfaces are now required to have the EXISTS and DELETE
 methods (either own
or inherited).

If tr/// is just counting characters, it doesn't attempt to
 modify its target.

untie() will now call an UNTIE() hook if it exists. See perltie
 for details. [561]

utime now supports utime undef, undef, @files to change the
 file timestamps to the
current time.

The rules for allowing underscores (underbars) in numeric constants
 have been relaxed and
simplified: now you can have an underscore
 simply between digits.

Rather than relying on C's argv[0] (which may not contain a full pathname)
 where possible $^X
is now set by asking the operating system.
 (eg by reading /proc/self/exe on Linux,
/proc/curproc/file on FreeBSD)

A new variable, ${^TAINT}, indicates whether taint mode is enabled.

You can now override the readline() builtin, and this overrides also
 the <FILEHANDLE> angle
bracket operator.

The command-line options -s and -F are now recognized on the shebang
 (#!) line.

Use of the /c match modifier without an accompanying /g modifier
 elicits a new warning: Use
 of /c modifier is meaningless without /g.

Use of /c in substitutions, even with /g, elicits Use of /c modifier is meaningless

Perl version 5.8.8 documentation - perl58delta

Page 9http://perldoc.perl.org

in s///.

Use of /g with split elicits Use of /g modifier is meaningless
 in split.

Support for the CLONE special subroutine had been added.
 With ithreads, when a new thread
is created, all Perl data is cloned,
 however non-Perl data cannot be cloned automatically. In
CLONE you
 can do whatever you need to do, like for example handle the cloning of
 non-Perl
data, if necessary. CLONE will be executed once for every
 package that has it defined or
inherited. It will be called in the
 context of the new thread, so all modifications are made in the
new area.

See perlmod

Modules and Pragmata
New Modules and Pragmata

Attribute::Handlers, originally by Damian Conway and now maintained
 by Arthur
Bergman, allows a class to define attribute handlers.

 package MyPack;
 use Attribute::Handlers;
 sub Wolf :ATTR(SCALAR) { print "howl!\n" }

 # later, in some package using or inheriting from MyPack...

 my MyPack $Fluffy : Wolf; # the attribute handler Wolf will be
called

Both variables and routines can have attribute handlers. Handlers can
 be specific to type
(SCALAR, ARRAY, HASH, or CODE), or specific to the
 exact compilation phase (BEGIN,
CHECK, INIT, or END).
 See Attribute::Handlers.

B::Concise, by Stephen McCamant, is a new compiler backend for
 walking the Perl syntax
tree, printing concise info about ops.
 The output is highly customisable. See B::Concise.
[561+]

The new bignum, bigint, and bigrat pragmas, by Tels, implement
 transparent bignum support
(using the Math::BigInt, Math::BigFloat,
 and Math::BigRat backends).

Class::ISA, by Sean Burke, is a module for reporting the search
 path for a class's ISA tree.
See Class::ISA.

Cwd now has a split personality: if possible, an XS extension is
 used, (this will hopefully be
faster, more secure, and more robust)
 but if not possible, the familiar Perl implementation is
used.

Devel::PPPort, originally by Kenneth Albanowski and now
 maintained by Paul Marquess,
has been added. It is primarily used
 by h2xs to enhance portability of XS modules between
different
 versions of Perl. See Devel::PPPort.

Digest, frontend module for calculating digests (checksums), from
 Gisle Aas, has been
added. See Digest.

Digest::MD5 for calculating MD5 digests (checksums) as defined in
 RFC 1321, from Gisle
Aas, has been added. See Digest::MD5.

 use Digest::MD5 'md5_hex';

 $digest = md5_hex("Thirsty Camel");

 print $digest, "\n"; # 01d19d9d2045e005c3f1b80e8b164de1

Perl version 5.8.8 documentation - perl58delta

Page 10http://perldoc.perl.org

NOTE: the MD5 backward compatibility module is deliberately not
 included since its further use
is discouraged.

See also PerlIO::via::QuotedPrint.

Encode, originally by Nick Ing-Simmons and now maintained by Dan
 Kogai, provides a
mechanism to translate between different character
 encodings. Support for Unicode,
ISO-8859-1, and ASCII are compiled in
 to the module. Several other encodings (like the rest
of the
 ISO-8859, CP*/Win*, Mac, KOI8-R, three variants EBCDIC, Chinese,
 Japanese, and
Korean encodings) are included and can be loaded at
 runtime. (For space considerations, the
largest Chinese encodings
 have been separated into their own CPAN module,
Encode::HanExtra,
 which Encode will use if available). See Encode.

Any encoding supported by Encode module is also available to the
 ":encoding()" layer if
PerlIO is used.

Hash::Util is the interface to the new restricted hashes
 feature. (Implemented by Jeffrey
Friedl, Nick Ing-Simmons, and
 Michael Schwern.) See Hash::Util.

I18N::Langinfo can be used to query locale information.
 See I18N::Langinfo.

I18N::LangTags, by Sean Burke, has functions for dealing with
 RFC3066-style language
tags. See I18N::LangTags.

ExtUtils::Constant, by Nicholas Clark, is a new tool for extension
 writers for generating
XS code to import C header constants.
 See ExtUtils::Constant.

Filter::Simple, by Damian Conway, is an easy-to-use frontend to
 Filter::Util::Call. See
Filter::Simple.

 # in MyFilter.pm:

 package MyFilter;

 use Filter::Simple sub {
 while (my ($from, $to) = splice @_, 0, 2) {
 s/$from/$to/g;
 }
 };

 1;

 # in user's code:

 use MyFilter qr/red/ => 'green';

 print "red\n"; # this code is filtered, will print "green\n"
 print "bored\n"; # this code is filtered, will print "bogreen\n"

 no MyFilter;

 print "red\n"; # this code is not filtered, will print "red\n"

File::Temp, by Tim Jenness, allows one to create temporary files
 and directories in an
easy, portable, and secure way. See File::Temp.
 [561+]

Filter::Util::Call, by Paul Marquess, provides you with the
 framework to write source
filters in Perl. For most uses, the
 frontend Filter::Simple is to be preferred. See Filter::Util::Call.

if, by Ilya Zakharevich, is a new pragma for conditional inclusion
 of modules.

Perl version 5.8.8 documentation - perl58delta

Page 11http://perldoc.perl.org

libnet, by Graham Barr, is a collection of perl5 modules related
 to network programming. See
Net::FTP, Net::NNTP, Net::Ping
 (not part of libnet, but related), Net::POP3, Net::SMTP,
 and
Net::Time.

Perl installation leaves libnet unconfigured; use libnetcfg
 to configure it.

List::Util, by Graham Barr, is a selection of general-utility
 list subroutines, such as sum(),
min(), first(), and shuffle().
 See List::Util.

Locale::Constants, Locale::Country, Locale::Currency Locale::Language,
and Locale::Script, by Neil Bowers, have
 been added. They provide the codes for various
locale standards, such
 as "fr" for France, "usd" for US Dollar, and "ja" for Japanese.

 use Locale::Country;

 $country = code2country('jp'); # $country gets
'Japan'
 $code = country2code('Norway'); # $code gets 'no'

See Locale::Constants, Locale::Country, Locale::Currency,
 and Locale::Language.

Locale::Maketext, by Sean Burke, is a localization framework. See Locale::Maketext, and
Locale::Maketext::TPJ13. The latter is an
 article about software localization, originally
published in The Perl
 Journal #13, and republished here with kind permission.

Math::BigRat for big rational numbers, to accompany Math::BigInt and
 Math::BigFloat, from
Tels. See Math::BigRat.

Memoize can make your functions faster by trading space for time,
 from Mark-Jason
Dominus. See Memoize.

MIME::Base64, by Gisle Aas, allows you to encode data in base64,
 as defined in RFC 2045
- MIME (Multipurpose Internet Mail
 Extensions).

 use MIME::Base64;

 $encoded = encode_base64('Aladdin:open sesame');
 $decoded = decode_base64($encoded);

 print $encoded, "\n"; # "QWxhZGRpbjpvcGVuIHNlc2FtZQ=="

See MIME::Base64.

MIME::QuotedPrint, by Gisle Aas, allows you to encode data
 in quoted-printable encoding,
as defined in RFC 2045 - MIME
 (Multipurpose Internet Mail Extensions).

 use MIME::QuotedPrint;

 $encoded = encode_qp("\xDE\xAD\xBE\xEF");
 $decoded = decode_qp($encoded);

 print $encoded, "\n"; # "=DE=AD=BE=EF\n"
 print $decoded, "\n"; # "\xDE\xAD\xBE\xEF\n"

See also PerlIO::via::QuotedPrint.

NEXT, by Damian Conway, is a pseudo-class for method redispatch.
 See NEXT.

open is a new pragma for setting the default I/O layers
 for open().

PerlIO::scalar, by Nick Ing-Simmons, provides the implementation
 of IO to "in memory"
Perl scalars as discussed above. It also serves
 as an example of a loadable PerlIO layer.

Perl version 5.8.8 documentation - perl58delta

Page 12http://perldoc.perl.org

Other future possibilities
 include PerlIO::Array and PerlIO::Code. See PerlIO::scalar.

PerlIO::via, by Nick Ing-Simmons, acts as a PerlIO layer and wraps
 PerlIO layer
functionality provided by a class (typically implemented
 in Perl code).

PerlIO::via::QuotedPrint, by Elizabeth Mattijsen, is an example
 of a PerlIO::via
class:

 use PerlIO::via::QuotedPrint;
 open($fh,">:via(QuotedPrint)",$path);

This will automatically convert everything output to $fh to
 Quoted-Printable. See PerlIO::via
and PerlIO::via::QuotedPrint.

Pod::ParseLink, by Russ Allbery, has been added,
 to parse L<> links in pods as described
in the new
 perlpodspec.

Pod::Text::Overstrike, by Joe Smith, has been added.
 It converts POD data to
formatted overstrike text.
 See Pod::Text::Overstrike. [561+]

Scalar::Util is a selection of general-utility scalar subroutines,
 such as blessed(),
reftype(), and tainted(). See Scalar::Util.

sort is a new pragma for controlling the behaviour of sort().

Storable gives persistence to Perl data structures by allowing the
 storage and retrieval of
Perl data to and from files in a fast and
 compact binary format. Because in effect Storable
does serialisation
 of Perl data structures, with it you can also clone deep, hierarchical

datastructures. Storable was originally created by Raphael Manfredi,
 but it is now maintained
by Abhijit Menon-Sen. Storable has been
 enhanced to understand the two new hash features,
Unicode keys and
 restricted hashes. See Storable.

Switch, by Damian Conway, has been added. Just by saying

 use Switch;

you have switch and case available in Perl.

 use Switch;

 switch ($val) {

		 case 1		 { print "number 1" }
		 case "a"	 { print "string a" }
		 case [1..10,42]	 { print "number in list" }
		 case (@array)	 { print "number in list" }
		 case /\w+/	 { print "pattern" }
		 case qr/\w+/	 { print "pattern" }
		 case (%hash)	 { print "entry in hash" }
		 case (\%hash)	 { print "entry in hash" }
		 case (\&sub)	 { print "arg to subroutine" }
		 else		 { print "previous case not true" }
 }

See Switch.

Test::More, by Michael Schwern, is yet another framework for writing
 test scripts, more
extensive than Test::Simple. See Test::More.

Test::Simple, by Michael Schwern, has basic utilities for writing
 tests. See Test::Simple.

Text::Balanced, by Damian Conway, has been added, for extracting
 delimited text

Perl version 5.8.8 documentation - perl58delta

Page 13http://perldoc.perl.org

sequences from strings.

 use Text::Balanced 'extract_delimited';

 ($a, $b) = extract_delimited("'never say never', he never said",
"'", '');

$a will be "'never say never'", $b will be ', he never said'.

In addition to extract_delimited(), there are also extract_bracketed(),
 extract_quotelike(),
extract_codeblock(), extract_variable(),
 extract_tagged(), extract_multiple(),
gen_delimited_pat(), and
 gen_extract_tagged(). With these, you can implement rather
advanced
 parsing algorithms. See Text::Balanced.

threads, by Arthur Bergman, is an interface to interpreter threads.
 Interpreter threads
(ithreads) is the new thread model introduced in
 Perl 5.6 but only available as an internal
interface for extension
 writers (and for Win32 Perl for fork() emulation). See threads,
threads::shared, and perlthrtut.

threads::shared, by Arthur Bergman, allows data sharing for
 interpreter threads. See
threads::shared.

Tie::File, by Mark-Jason Dominus, associates a Perl array with the
 lines of a file. See
Tie::File.

Tie::Memoize, by Ilya Zakharevich, provides on-demand loaded hashes.
 See Tie::Memoize.

Tie::RefHash::Nestable, by Edward Avis, allows storing hash
 references (unlike the
standard Tie::RefHash) The module is contained
 within Tie::RefHash. See Tie::RefHash.

Time::HiRes, by Douglas E. Wegscheid, provides high resolution
 timing (ualarm, usleep,
and gettimeofday). See Time::HiRes.

Unicode::UCD offers a querying interface to the Unicode Character
 Database. See
Unicode::UCD.

Unicode::Collate, by SADAHIRO Tomoyuki, implements the UCA
 (Unicode Collation
Algorithm) for sorting Unicode strings.
 See Unicode::Collate.

Unicode::Normalize, by SADAHIRO Tomoyuki, implements the various
 Unicode
normalization forms. See Unicode::Normalize.

XS::APItest, by Tim Jenness, is a test extension that exercises XS
 APIs. Currently only
printf() is tested: how to output various
 basic data types from XS.

XS::Typemap, by Tim Jenness, is a test extension that exercises
 XS typemaps. Nothing gets
installed, but the code is worth studying
 for extension writers.

Updated And Improved Modules and Pragmata
The following independently supported modules have been updated to the
 newest versions
from CPAN: CGI, CPAN, DB_File, File::Spec, File::Temp,
 Getopt::Long, Math::BigFloat,
Math::BigInt, the podlators bundle
 (Pod::Man, Pod::Text), Pod::LaTeX [561+], Pod::Parser,
Storable,
 Term::ANSIColor, Test, Text-Tabs+Wrap.

attributes::reftype() now works on tied arguments.

AutoLoader can now be disabled with no AutoLoader;.

B::Deparse has been significantly enhanced by Robin Houston. It can
 now deparse almost all
of the standard test suite (so that the tests
 still succeed). There is a make target "test.deparse"
for trying this
 out.

Perl version 5.8.8 documentation - perl58delta

Page 14http://perldoc.perl.org

Carp now has better interface documentation, and the @CARP_NOT
 interface has been
added to get optional control over where errors
 are reported independently of @ISA, by Ben
Tilly.

Class::Struct can now define the classes in compile time.

Class::Struct now assigns the array/hash element if the accessor
 is called with an array/hash
element as the sole argument.

The return value of Cwd::fastcwd() is now tainted.

Data::Dumper now has an option to sort hashes.

Data::Dumper now has an option to dump code references
 using B::Deparse.

DB_File now supports newer Berkeley DB versions, among
 other improvements.

Devel::Peek now has an interface for the Perl memory statistics
 (this works only if you are
using perl's malloc, and if you have
 compiled with debugging).

The English module can now be used without the infamous performance
 hit by saying

	 use English '-no_match_vars';

(Assuming, of course, that you don't need the troublesome variables $`, $&, or $'.) Also,
introduced @LAST_MATCH_START and @LAST_MATCH_END English aliases for @- and @+.

ExtUtils::MakeMaker has been significantly cleaned up and fixed.
 The enhanced version has
also been backported to earlier releases
 of Perl and submitted to CPAN so that the earlier
releases can
 enjoy the fixes.

The arguments of WriteMakefile() in Makefile.PL are now checked
 for sanity much more
carefully than before. This may cause new
 warnings when modules are being installed. See
ExtUtils::MakeMaker
 for more details.

ExtUtils::MakeMaker now uses File::Spec internally, which hopefully
 leads to better portability.

Fcntl, Socket, and Sys::Syslog have been rewritten by Nicholas Clark
 to use the new-style
constant dispatch section (see ExtUtils::Constant).
 This means that they will be more robust
and hopefully faster.

File::Find now chdir()s correctly when chasing symbolic links. [561]

File::Find now has pre- and post-processing callbacks. It also
 correctly changes directories
when chasing symbolic links. Callbacks
 (naughtily) exiting with "next;" instead of "return;" now
work.

File::Find is now (again) reentrant. It also has been made
 more portable.

The warnings issued by File::Find now belong to their own category.
 You can enable/disable
them with use/no warnings 'File::Find';.

File::Glob::glob() has been renamed to File::Glob::bsd_glob()
 because the name clashes with
the builtin glob(). The older
 name is still available for compatibility, but is deprecated. [561]

File::Glob now supports GLOB_LIMIT constant to limit the size of
 the returned list of
filenames.

IPC::Open3 now allows the use of numeric file descriptors.

IO::Socket now has an atmark() method, which returns true if the socket
 is positioned at the
out-of-band mark. The method is also exportable
 as a sockatmark() function.

IO::Socket::INET failed to open the specified port if the service name
 was not known. It now

Perl version 5.8.8 documentation - perl58delta

Page 15http://perldoc.perl.org

correctly uses the supplied port number as is. [561]

IO::Socket::INET has support for the ReusePort option (if your
 platform supports it). The
Reuse option now has an alias, ReuseAddr.
 For clarity, you may want to prefer ReuseAddr.

IO::Socket::INET now supports a value of zero for LocalPort
 (usually meaning that the
operating system will make one up.)

'use lib' now works identically to @INC. Removing directories
 with 'no lib' now works.

Math::BigFloat and Math::BigInt have undergone a full rewrite by Tels.
 They are now
magnitudes faster, and they support various bignum
 libraries such as GMP and PARI as their
backends.

Math::Complex handles inf, NaN etc., better.

Net::Ping has been considerably enhanced by Rob Brown: multihoming is
 now supported,
Win32 functionality is better, there is now time
 measuring functionality (optionally
high-resolution using
 Time::HiRes), and there is now "external" protocol which uses

Net::Ping::External module which runs your external ping utility and
 parses the output. A
version of Net::Ping::External is available in
 CPAN.

Note that some of the Net::Ping tests are disabled when running
 under the Perl distribution
since one cannot assume one or more
 of the following: enabled echo port at localhost, full
Internet
 connectivity, or sympathetic firewalls. You can set the environment
 variable
PERL_TEST_Net_Ping to "1" (one) before running the Perl test
 suite to enable all the
Net::Ping tests.

POSIX::sigaction() is now much more flexible and robust.
 You can now install coderef
handlers, 'DEFAULT', and 'IGNORE'
 handlers, installing new handlers was not atomic.

In Safe, %INC is now localised in a Safe compartment so that
 use/require work.

In SDBM_File on dosish platforms, some keys went missing because of
 lack of support for
files with "holes". A workaround for the problem
 has been added.

In Search::Dict one can now have a pre-processing hook for the
 lines being searched.

The Shell module now has an OO interface.

In Sys::Syslog there is now a failover mechanism that will go
 through alternative connection
mechanisms until the message
 is successfully logged.

The Test module has been significantly enhanced.

Time::Local::timelocal() does not handle fractional seconds anymore.
 The rationale is that
neither does localtime(), and timelocal() and
 localtime() are supposed to be inverses of each
other.

The vars pragma now supports declaring fully qualified variables.
 (Something that our()
does not and will not support.)

The utf8:: name space (as in the pragma) provides various
 Perl-callable functions to
provide low level access to Perl's
 internal Unicode representation. At the moment only length()
has been implemented.

Utility Changes
Emacs perl mode (emacs/cperl-mode.el) has been updated to version
 4.31.

emacs/e2ctags.pl is now much faster.

enc2xs is a tool for people adding their own encodings to the
 Encode module.

Perl version 5.8.8 documentation - perl58delta

Page 16http://perldoc.perl.org

h2ph now supports C trigraphs.

h2xs now produces a template README.

h2xs now uses Devel::PPPort for better portability between
 different versions of Perl.

h2xs uses the new ExtUtils::Constant module
 which will affect newly created extensions that
define constants.
 Since the new code is more correct (if you have two constants where the

first one is a prefix of the second one, the first constant never
 got defined), less lossy (it uses
integers for integer constant,
 as opposed to the old code that used floating point numbers
even for
 integer constants), and slightly faster, you might want to consider
 regenerating your
extension code (the new scheme makes regenerating
 easy). h2xs now also supports C
trigraphs.

libnetcfg has been added to configure libnet.

perlbug is now much more robust. It also sends the bug report to
 perl.org, not perl.com.

perlcc has been rewritten and its user interface (that is,
 command line) is much more like
that of the UNIX C compiler, cc.
 (The perlbc tools has been removed. Use perlcc -B
instead.) Note that perlcc is still considered very experimental and
 unsupported. [561]

perlivp is a new Installation Verification Procedure utility
 for running any time after installing
Perl.

piconv is an implementation of the character conversion utility iconv, demonstrating the
new Encode module.

pod2html now allows specifying a cache directory.

pod2html now produces XHTML 1.0.

pod2html now understands POD written using different line endings
 (PC-like CRLF versus
UNIX-like LF versus MacClassic-like CR).

s2p has been completely rewritten in Perl. (It is in fact a full
 implementation of sed in Perl: you
can use the sed functionality by
 using the psed utility.)

xsubpp now understands POD documentation embedded in the *.xs
 files. [561]

xsubpp now supports the OUT keyword.

New Documentation
perl56delta details the changes between the 5.005 release and the
 5.6.0 release.

perlclib documents the internal replacements for standard C library
 functions. (Interesting only
for extension writers and Perl core
 hackers.) [561+]

perldebtut is a Perl debugging tutorial. [561+]

perlebcdic contains considerations for running Perl on EBCDIC
 platforms. [561+]

perlintro is a gentle introduction to Perl.

perliol documents the internals of PerlIO with layers.

perlmodstyle is a style guide for writing modules.

perlnewmod tells about writing and submitting a new module. [561+]

perlpacktut is a pack() tutorial.

perlpod has been rewritten to be clearer and to record the best
 practices gathered over the
years.

Perl version 5.8.8 documentation - perl58delta

Page 17http://perldoc.perl.org

perlpodspec is a more formal specification of the pod format,
 mainly of interest for writers of
pod applications, not to
 people writing in pod.

perlretut is a regular expression tutorial. [561+]

perlrequick is a regular expressions quick-start guide.
 Yes, much quicker than perlretut. [561]

perltodo has been updated.

perltootc has been renamed as perltooc (to not to conflict
 with perltoot in filesystems restricted
to "8.3" names).

perluniintro is an introduction to using Unicode in Perl.
 (perlunicode is more of a detailed
reference and background
 information)

perlutil explains the command line utilities packaged with the Perl
 distribution. [561+]

The following platform-specific documents are available before
 the installation as README.platform,
and after the installation
 as perlplatform:

 perlaix perlamiga perlapollo perlbeos perlbs2000
 perlce perlcygwin perldgux perldos perlepoc perlfreebsd perlhpux
 perlhurd perlirix perlmachten perlmacos perlmint perlmpeix
 perlnetware perlos2 perlos390 perlplan9 perlqnx perlsolaris
 perltru64 perluts perlvmesa perlvms perlvos perlwin32

These documents usually detail one or more of the following subjects:
 configuring, building, testing,
installing, and sometimes also using
 Perl on the said platform.

Eastern Asian Perl users are now welcomed in their own languages:
 README.jp (Japanese),
README.ko (Korean), README.cn (simplified
 Chinese) and README.tw (traditional Chinese),
which are written in
 normal pod but encoded in EUC-JP, EUC-KR, EUC-CN and Big5. These
 will get
installed as

 perljp perlko perlcn perltw

The documentation for the POSIX-BC platform is called "BS2000", to avoid
 confusion with the
Perl POSIX module.

The documentation for the WinCE platform is called perlce (README.ce
 in the source code
kit), to avoid confusion with the perlwin32
 documentation on 8.3-restricted filesystems.

Performance Enhancements
map() could get pathologically slow when the result list it generates
 is larger than the source
list. The performance has been improved for
 common scenarios. [561]

sort() is also fully reentrant, in the sense that the sort function
 can itself call sort(). This did not
work reliably in previous
 releases. [561]

sort() has been changed to use primarily mergesort internally as
 opposed to the earlier
quicksort. For very small lists this may
 result in slightly slower sorting times, but in general the
speedup
 should be at least 20%. Additional bonuses are that the worst case
 behaviour of
sort() is now better (in computer science terms it now
 runs in time O(N log N), as opposed to
quicksort's Theta(N**2)
 worst-case run time behaviour), and that sort() is now stable
 (meaning
that elements with identical keys will stay ordered as they
 were before the sort). See the sort
pragma for information.

The story in more detail: suppose you want to serve yourself a little
 slice of Pi.

 @digits = (3,1,4,1,5,9);

Perl version 5.8.8 documentation - perl58delta

Page 18http://perldoc.perl.org

A numerical sort of the digits will yield (1,1,3,4,5,9), as expected.
 Which 1 comes first is hard
to know, since one 1 looks pretty
 much like any other. You can regard this as totally trivial,
 or
somewhat profound. However, if you just want to sort the even
 digits ahead of the odd ones,
then what will

 sort { ($a % 2) <=> ($b % 2) } @digits;

yield? The only even digit, 4, will come first. But how about
 the odd numbers, which all
compare equal? With the quicksort algorithm
 used to implement Perl 5.6 and earlier, the order
of ties is left up
 to the sort. So, as you add more and more digits of Pi, the order
 in which the
sorted even and odd digits appear will change.
 and, for sufficiently large slices of Pi, the
quicksort algorithm
 in Perl 5.8 won't return the same results even if reinvoked with the
 same
input. The justification for this rests with quicksort's
 worst case behavior. If you run

 sort { $a <=> $b } (1 .. $N , 1 .. $N);

(something you might approximate if you wanted to merge two sorted
 arrays using sort),
doubling $N doesn't just double the quicksort time,
 it quadruples it. Quicksort has a worst case
run time that can
 grow like N**2, so-called quadratic behaviour, and it can happen
 on patterns
that may well arise in normal use. You won't notice this
 for small arrays, but you will notice it
with larger arrays,
 and you may not live long enough for the sort to complete on arrays
 of a
million elements. So the 5.8 quicksort scrambles large arrays
 before sorting them, as a
statistical defence against quadratic behaviour.
 But that means if you sort the same large
array twice, ties may be
 broken in different ways.

Because of the unpredictability of tie-breaking order, and the quadratic
 worst-case behaviour,
quicksort was almost replaced completely with
 a stable mergesort. Stable means that ties are
broken to preserve
 the original order of appearance in the input array. So

 sort { ($a % 2) <=> ($b % 2) } (3,1,4,1,5,9);

will yield (4,3,1,1,5,9), guaranteed. The even and odd numbers
 appear in the output in the
same order they appeared in the input.
 Mergesort has worst case O(N log N) behaviour, the
best value
 attainable. And, ironically, this mergesort does particularly
 well where quicksort
goes quadratic: mergesort sorts (1..$N, 1..$N)
 in O(N) time. But quicksort was rescued at the
last moment because
 it is faster than mergesort on certain inputs and platforms.
 For example,
if you really don't care about the order of even
 and odd digits, quicksort will run in O(N) time;
it's very good
 at sorting many repetitions of a small number of distinct elements.
 The quicksort
divide and conquer strategy works well on platforms
 with relatively small, very fast, caches.
Eventually, the problem gets
 whittled down to one that fits in the cache, from which point it

benefits from the increased memory speed.

Quicksort was rescued by implementing a sort pragma to control aspects
 of the sort. The
stable subpragma forces stable behaviour,
 regardless of algorithm. The _quicksort and
_mergesort
 subpragmas are heavy-handed ways to select the underlying implementation.

The leading _ is a reminder that these subpragmas may not survive
 beyond 5.8. More
appropriate mechanisms for selecting the implementation
 exist, but they wouldn't have arrived
in time to save quicksort.

Hashes now use Bob Jenkins "One-at-a-Time" hashing key algorithm
 (
http://burtleburtle.net/bob/hash/doobs.html). This algorithm is
 reasonably fast while producing
a much better spread of values than
 the old hashing algorithm (originally by Chris Torek, later
tweaked by
 Ilya Zakharevich). Hash values output from the algorithm on a hash of
 all 3-char
printable ASCII keys comes much closer to passing the
 DIEHARD random number generation
tests. According to perlbench, this
 change has not affected the overall speed of Perl.

unshift() should now be noticeably faster.

Perl version 5.8.8 documentation - perl58delta

Page 19http://perldoc.perl.org

Installation and Configuration Improvements
Generic Improvements

INSTALL now explains how you can configure Perl to use 64-bit
 integers even on non-64-bit
platforms.

Policy.sh policy change: if you are reusing a Policy.sh file
 (see INSTALL) and you use
Configure -Dprefix=/foo/bar and in the old
 Policy $prefix eq $siteprefix and $prefix eq
$vendorprefix, all of
 them will now be changed to the new prefix, /foo/bar. (Previously
 only
$prefix changed.) If you do not like this new behaviour,
 specify prefix, siteprefix, and
vendorprefix explicitly.

A new optional location for Perl libraries, otherlibdirs, is available.
 It can be used for example
for vendor add-ons without disturbing Perl's
 own library directories.

In many platforms, the vendor-supplied 'cc' is too stripped-down to
 build Perl (basically, 'cc'
doesn't do ANSI C). If this seems
 to be the case and 'cc' does not seem to be the GNU C
compiler
 'gcc', an automatic attempt is made to find and use 'gcc' instead.

gcc needs to closely track the operating system release to avoid
 build problems. If Configure
finds that gcc was built for a different
 operating system release than is running, it now gives a
clearly visible
 warning that there may be trouble ahead.

Since Perl 5.8 is not binary-compatible with previous releases
 of Perl, Configure no longer
suggests including the 5.005
 modules in @INC.

Configure -S can now run non-interactively. [561]

Configure support for pdp11-style memory models has been removed due
 to obsolescence.
[561]

configure.gnu now works with options with whitespace in them.

installperl now outputs everything to STDERR.

Because PerlIO is now the default on most platforms, "-perlio" doesn't
 get appended to the
$Config{archname} (also known as $^O) anymore.
 Instead, if you explicitly choose not to use
perlio (Configure command
 line option -Uuseperlio), you will get "-stdio" appended.

Another change related to the architecture name is that "-64all"
 (-Duse64bitall, or "maximally
64-bit") is appended only if your
 pointers are 64 bits wide. (To be exact, the use64bitall is
ignored.)

In AFS installations, one can configure the root of the AFS to be
 somewhere else than the
default /afs by using the Configure
 parameter -Dafsroot=/some/where/else.

APPLLIB_EXP, a lesser-known configuration-time definition, has been
 documented. It can be
used to prepend site-specific directories
 to Perl's default search path (@INC); see INSTALL
for information.

The version of Berkeley DB used when the Perl (and, presumably, the
 DB_File extension) was
built is now available as @Config{qw(db_version_major db_version_minor
db_version_patch)}
 from Perl and as DB_VERSION_MAJOR_CFG
DB_VERSION_MINOR_CFG
 DB_VERSION_PATCH_CFG from C.

Building Berkeley DB3 for compatibility modes for DB, NDBM, and ODBM
 has been
documented in INSTALL.

If you have CPAN access (either network or a local copy such as a
 CD-ROM) you can during
specify extra modules to Configure to build and
 install with Perl using the -Dextras=... option.
See INSTALL for
 more details.

Perl version 5.8.8 documentation - perl58delta

Page 20http://perldoc.perl.org

In addition to config.over, a new override file, config.arch, is
 available. This file is supposed to
be used by hints file writers
 for architecture-wide changes (as opposed to config.over which is

for site-wide changes).

If your file system supports symbolic links, you can build Perl outside
 of the source directory
by

	 mkdir perl/build/directory
	 cd perl/build/directory
	 sh /path/to/perl/source/Configure -Dmksymlinks ...

This will create in perl/build/directory a tree of symbolic links
 pointing to files in
/path/to/perl/source. The original files are left
 unaffected. After Configure has finished, you can
just say

	 make all test

and Perl will be built and tested, all in perl/build/directory.
 [561]

For Perl developers, several new make targets for profiling
 and debugging have been added;
see perlhack.

Use of the gprof tool to profile Perl has been documented in perlhack. There is
a make target called "perl.gprof" for
 generating a gprofiled Perl executable.

If you have GCC 3, there is a make target called "perl.gcov" for
 creating a
gcoved Perl executable for coverage analysis. See perlhack.

If you are on IRIX or Tru64 platforms, new profiling/debugging options
 have
been added; see perlhack for more information about pixie and
 Third Degree.

Guidelines of how to construct minimal Perl installations have
 been added to INSTALL.

The Thread extension is now not built at all under ithreads
 (Configure -Duseithreads)
because it wouldn't work anyway (the
 Thread extension requires being Configured with
-Duse5005threads).

Note that the 5.005 threads are unsupported and deprecated: if you
 have code written
for the old threads you should migrate it to the
 new ithreads model.

The Gconvert macro ($Config{d_Gconvert}) used by perl for stringifying
 floating-point numbers
is now more picky about using sprintf %.*g
 rules for the conversion. Some platforms that used
to use gcvt may
 now resort to the slower sprintf.

The obsolete method of making a special (e.g., debugging) flavor
 of perl by saying

	 make LIBPERL=libperld.a

has been removed. Use -DDEBUGGING instead.

New Or Improved Platforms
For the list of platforms known to support Perl,
 see "Supported Platforms" in perlport.

AIX dynamic loading should be now better supported.

AIX should now work better with gcc, threads, and 64-bitness. Also the
 long doubles support
in AIX should be better now. See perlaix.

AtheOS (http://www.atheos.cx/) is a new platform.

BeOS has been reclaimed.

The DG/UX platform now supports 5.005-style threads.
 See perldgux.

Perl version 5.8.8 documentation - perl58delta

Page 21http://perldoc.perl.org

The DYNIX/ptx platform (also known as dynixptx) is supported at or
 near osvers 4.5.2.

EBCDIC platforms (z/OS (also known as OS/390), POSIX-BC, and VM/ESA)
 have been
regained. Many test suite tests still fail and the
 co-existence of Unicode and EBCDIC isn't
quite settled, but the
 situation is much better than with Perl 5.6. See perlos390, perlbs2000
(for POSIX-BC), and perlvmesa for more information.

Building perl with -Duseithreads or -Duse5005threads now works under
 HP-UX 10.20
(previously it only worked under 10.30 or later). You will
 need a thread library package
installed. See README.hpux. [561]

Mac OS Classic is now supported in the mainstream source package
 (MacPerl has of course
been available since perl 5.004 but now the
 source code bases of standard Perl and MacPerl
have been synchronised)
 [561]

Mac OS X (or Darwin) should now be able to build Perl even on HFS+
 filesystems. (The
case-insensitivity used to confuse the Perl build
 process.)

NCR MP-RAS is now supported. [561]

All the NetBSD specific patches (except for the installation
 specific ones) have been merged
back to the main distribution.

NetWare from Novell is now supported. See perlnetware.

NonStop-UX is now supported. [561]

NEC SUPER-UX is now supported.

All the OpenBSD specific patches (except for the installation
 specific ones) have been merged
back to the main distribution.

Perl has been tested with the GNU pth userlevel thread package
 (
http://www.gnu.org/software/pth/pth.html). All thread tests
 of Perl now work, but not without
adding some yield()s to the tests,
 so while pth (and other userlevel thread implementations)
can be
 considered to be "working" with Perl ithreads, keep in mind the
 possible
non-preemptability of the underlying thread implementation.

Stratus VOS is now supported using Perl's native build method
 (Configure). This is the
recommended method to build Perl on
 VOS. The older methods, which build miniperl, are still

available. See perlvos. [561+]

The Amdahl UTS UNIX mainframe platform is now supported. [561]

WinCE is now supported. See perlce.

z/OS (formerly known as OS/390, formerly known as MVS OE) now has
 support for dynamic
loading. This is not selected by default,
 however, you must specify -Dusedl in the arguments
of Configure. [561]

Selected Bug Fixes
Numerous memory leaks and uninitialized memory accesses have been
 hunted down. Most
importantly, anonymous subs used to leak quite
 a bit. [561]

The autouse pragma didn't work for Multi::Part::Function::Names.

caller() could cause core dumps in certain situations. Carp was
 sometimes affected by this
problem. In particular, caller() now
 returns a subroutine name of (unknown) for subroutines
that have
 been removed from the symbol table.

chop(@list) in list context returned the characters chopped in
 reverse order. This has been
reversed to be in the right order. [561]

Perl version 5.8.8 documentation - perl58delta

Page 22http://perldoc.perl.org

Configure no longer includes the DBM libraries (dbm, gdbm, db, ndbm)
 when building the Perl
binary. The only exception to this is SunOS 4.x,
 which needs them. [561]

The behaviour of non-decimal but numeric string constants such as
 "0x23" was
platform-dependent: in some platforms that was seen as 35,
 in some as 0, in some as a
floating point number (don't ask). This
 was caused by Perl's using the operating system
libraries in a situation
 where the result of the string to number conversion is undefined: now

Perl consistently handles such strings as zero in numeric contexts.

Several debugger fixes: exit code now reflects the script exit code,
 condition "0" now treated
correctly, the d command now checks
 line number, $. no longer gets corrupted, and all
debugger output
 now goes correctly to the socket if RemotePort is set. [561]

The debugger (perl5db.pl) has been modified to present a more
 consistent commands
interface, via (CommandSet=580). perl5db.t was
 also added to test the changes, and as a
placeholder for further tests.

See perldebug.

The debugger has a new dumpDepth option to control the maximum
 depth to which nested
structures are dumped. The x command has
 been extended so that x N EXPR dumps out the
value of EXPR to a
 depth of at most N levels.

The debugger can now show lexical variables if you have the CPAN
 module PadWalker
installed.

The order of DESTROYs has been made more predictable.

Perl 5.6.0 could emit spurious warnings about redefinition of
 dl_error() when statically building
extensions into perl.
 This has been corrected. [561]

dprofpp -R didn't work.

*foo{FORMAT} now works.

Infinity is now recognized as a number.

UNIVERSAL::isa no longer caches methods incorrectly. (This broke
 the Tk extension with
5.6.0.) [561]

Lexicals I: lexicals outside an eval "" weren't resolved
 correctly inside a subroutine definition
inside the eval "" if they
 were not already referenced in the top level of the eval""ed code.

Lexicals II: lexicals leaked at file scope into subroutines that
 were declared before the lexicals.

Lexical warnings now propagating correctly between scopes
 and into eval "...".

use warnings qw(FATAL all) did not work as intended. This has been
 corrected. [561]

warnings::enabled() now reports the state of $^W correctly if the caller
 isn't using lexical
warnings. [561]

Line renumbering with eval and #line now works. [561]

Fixed numerous memory leaks, especially in eval "".

Localised tied variables no longer leak memory

 use Tie::Hash;
 tie my %tied_hash => 'Tie::StdHash';

 ...

 # Used to leak memory every time local() was called;

Perl version 5.8.8 documentation - perl58delta

Page 23http://perldoc.perl.org

 # in a loop, this added up.
 local($tied_hash{Foo}) = 1;

Localised hash elements (and %ENV) are correctly unlocalised to not
 exist, if they didn't
before they were localised.

 use Tie::Hash;
 tie my %tied_hash => 'Tie::StdHash';

 ...

 # Nothing has set the FOO element so far

 { local $tied_hash{FOO} = 'Bar' }

 # This used to print, but not now.
 print "exists!\n" if exists $tied_hash{FOO};

As a side effect of this fix, tied hash interfaces must define
 the EXISTS and DELETE
methods.

mkdir() now ignores trailing slashes in the directory name,
 as mandated by POSIX.

Some versions of glibc have a broken modfl(). This affects builds
 with -Duselongdouble.
This version of Perl detects this brokenness
 and has a workaround for it. The glibc release
2.2.2 is known to have
 fixed the modfl() bug.

Modulus of unsigned numbers now works (4063328477 % 65535 used to
 return 27406,
instead of 27047). [561]

Some "not a number" warnings introduced in 5.6.0 eliminated to be
 more compatible with
5.005. Infinity is now recognised as a number. [561]

Numeric conversions did not recognize changes in the string value
 properly in certain
circumstances. [561]

Attributes (such as :shared) didn't work with our().

our() variables will not cause bogus "Variable will not stay shared"
 warnings. [561]

"our" variables of the same name declared in two sibling blocks
 resulted in bogus warnings
about "redeclaration" of the variables.
 The problem has been corrected. [561]

pack "Z" now correctly terminates the string with "\0".

Fix password routines which in some shadow password platforms
 (e.g. HP-UX) caused
getpwent() to return every other entry.

The PERL5OPT environment variable (for passing command line arguments
 to Perl) didn't
work for more than a single group of options. [561]

PERL5OPT with embedded spaces didn't work.

printf() no longer resets the numeric locale to "C".

qw(a\\b) now parses correctly as 'a\\b': that is, as three
 characters, not four. [561]

pos() did not return the correct value within s///ge in earlier
 versions. This is now handled
correctly. [561]

Printing quads (64-bit integers) with printf/sprintf now works
 without the q L ll prefixes
(assuming you are on a quad-capable platform).

Perl version 5.8.8 documentation - perl58delta

Page 24http://perldoc.perl.org

Regular expressions on references and overloaded scalars now work. [561+]

Right-hand side magic (GMAGIC) could in many cases such as string
 concatenation be
invoked too many times.

scalar() now forces scalar context even when used in void context.

SOCKS support is now much more robust.

sort() arguments are now compiled in the right wantarray context
 (they were accidentally using
the context of the sort() itself).
 The comparison block is now run in scalar context, and the
arguments
 to be sorted are always provided list context. [561]

Changed the POSIX character class [[:space:]] to include the (very
 rarely used) vertical
tab character. Added a new POSIX-ish character
 class [[:blank:]] which stands for
horizontal whitespace
 (currently, the space and the tab).

The tainting behaviour of sprintf() has been rationalized. It does
 not taint the result of floating
point formats anymore, making the
 behaviour consistent with that of string interpolation. [561]

Some cases of inconsistent taint propagation (such as within hash
 values) have been fixed.

The RE engine found in Perl 5.6.0 accidentally pessimised certain kinds
 of simple pattern
matches. These are now handled better. [561]

Regular expression debug output (whether through use re 'debug'
 or via -Dr) now looks
better. [561]

Multi-line matches like "a\nxb\n" =~ /(?!\A)x/m were flawed. The
 bug has been fixed.
[561]

Use of $& could trigger a core dump under some situations. This
 is now avoided. [561]

The regular expression captured submatches ($1, $2, ...) are now
 more consistently unset if
the match fails, instead of leaving false
 data lying around in them. [561]

readline() on files opened in "slurp" mode could return an extra
 "" (blank line) at the end in
certain situations. This has been
 corrected. [561]

Autovivification of symbolic references of special variables described
 in perlvar (as in
${$num}) was accidentally disabled. This works
 again now. [561]

Sys::Syslog ignored the LOG_AUTH constant.

$AUTOLOAD, sort(), lock(), and spawning subprocesses
 in multiple threads simultaneously
are now thread-safe.

Tie::Array's SPLICE method was broken.

Allow a read-only string on the left-hand side of a non-modifying tr///.

If STDERR is tied, warnings caused by warn and die now
 correctly pass to it.

Several Unicode fixes.

BOMs (byte order marks) at the beginning of Perl files
 (scripts, modules)
should now be transparently skipped.
 UTF-16 and UCS-2 encoded Perl files
should now be read correctly.

The character tables have been updated to Unicode 3.2.0.

Comparing with utf8 data does not magically upgrade non-utf8 data
 into utf8.
(This was a problem for example if you were mixing data
 from I/O and Unicode
data: your output might have got magically encoded
 as UTF-8.)

Perl version 5.8.8 documentation - perl58delta

Page 25http://perldoc.perl.org

Generating illegal Unicode code points such as U+FFFE, or the UTF-16

surrogates, now also generates an optional warning.

IsAlnum, IsAlpha, and IsWord now match titlecase.

Concatenation with the . operator or via variable interpolation, eq, substr,
reverse, quotemeta, the x operator,
 substitution with s///, single-quoted
UTF-8, should now work.

The tr/// operator now works. Note that the tr///CU
 functionality has been
removed (but see pack('U0', ...)).

eval "v200" now works.

Perl 5.6.0 parsed m/\x{ab}/ incorrectly, leading to spurious warnings.
 This has
been corrected. [561]

Zero entries were missing from the Unicode classes such as IsDigit.

Large unsigned numbers (those above 2**31) could sometimes lose their
 unsignedness,
causing bogus results in arithmetic operations. [561]

The Perl parser has been stress tested using both random input and
 Markov chain input and
the few found crashes and lockups have been
 fixed.

Platform Specific Changes and Fixes
BSDI 4.*

Perl now works on post-4.0 BSD/OSes.

All BSDs

Setting $0 now works (as much as possible; see perlvar for details).

Cygwin

Numerous updates; currently synchronised with Cygwin 1.3.10.

Previously DYNIX/ptx had problems in its Configure probe for non-blocking I/O.

EPOC

EPOC now better supported. See README.epoc. [561]

FreeBSD 3.*

Perl now works on post-3.0 FreeBSDs.

HP-UX

README.hpux updated; Configure -Duse64bitall now works;
 now uses HP-UX malloc
instead of Perl malloc.

IRIX

Numerous compilation flag and hint enhancements; accidental mixing
 of 32-bit and 64-bit
libraries (a doomed attempt) made much harder.

Linux

Long doubles should now work (see INSTALL). [561]

Linux previously had problems related to sockaddrlen when using
 accept(),
recvfrom() (in Perl: recv()), getpeername(), and
 getsockname().

Mac OS Classic

Perl version 5.8.8 documentation - perl58delta

Page 26http://perldoc.perl.org

Compilation of the standard Perl distribution in Mac OS Classic should
 now work if you have
the Metrowerks development environment and the
 missing Mac-specific toolkit bits. Contact
the macperl mailing list
 for details.

MPE/iX

MPE/iX update after Perl 5.6.0. See README.mpeix. [561]

NetBSD/threads: try installing the GNU pth (should be in the
 packages collection, or
http://www.gnu.org/software/pth/),
 and Configure with -Duseithreads.

NetBSD/sparc

Perl now works on NetBSD/sparc.

OS/2

Now works with usethreads (see INSTALL). [561]

Solaris

64-bitness using the Sun Workshop compiler now works.

Stratus VOS

The native build method requires at least VOS Release 14.5.0
 and GNU C++/GNU Tools
2.0.1 or later. The Perl pack function
 now maps overflowed values to +infinity and underflowed
values
 to -infinity.

Tru64 (aka Digital UNIX, aka DEC OSF/1)

The operating system version letter now recorded in $Config{osvers}.
 Allow compiling with gcc
(previously explicitly forbidden). Compiling
 with gcc still not recommended because buggy
code results, even with
 gcc 2.95.2.

Unicos

Fixed various alignment problems that lead into core dumps either
 during build or later; no
longer dies on math errors at runtime;
 now using full quad integers (64 bits), previously was
using
 only 46 bit integers for speed.

VMS

See Socket Extension Dynamic in VMS and IEEE-format Floating Point Default on OpenVMS
Alpha for important changes not otherwise listed here.

chdir() now works better despite a CRT bug; now works with MULTIPLICITY
 (see INSTALL);
now works with Perl's malloc.

The tainting of %ENV elements via keys or values was previously
 unimplemented. It now
works as documented.

The waitpid emulation has been improved. The worst bug (now fixed)
 was that a pid of -1
would cause a wildcard search of all processes on
 the system.

POSIX-style signals are now emulated much better on VMS versions prior
 to 7.0.

The system function and backticks operator have improved
 functionality and better error
handling. [561]

File access tests now use current process privileges rather than the
 user's default privileges,
which could sometimes result in a mismatch
 between reported access and actual access. This
improvement is only
 available on VMS v6.0 and later.

There is a new kill implementation based on sys$sigprc that allows
 older VMS systems
(pre-7.0) to use kill to send signals rather than
 simply force exit. This implementation also
allows later systems to
 call kill from within a signal handler.

Iterative logical name translations are now limited to 10 iterations in
 imitation of SHOW
LOGICAL and other OpenVMS facilities.

Perl version 5.8.8 documentation - perl58delta

Page 27http://perldoc.perl.org

Windows

Signal handling now works better than it used to. It is now implemented
 using a
Windows message loop, and is therefore less prone to random
 crashes.

fork() emulation is now more robust, but still continues to have a few
 esoteric
bugs and caveats. See perlfork for details. [561+]

A failed (pseudo)fork now returns undef and sets errno to EAGAIN. [561]

The following modules now work on Windows:

 ExtUtils::Embed [561]
 IO::Pipe
 IO::Poll
 Net::Ping

IO::File::new_tmpfile() is no longer limited to 32767 invocations
 per-process.

Better chdir() return value for a non-existent directory.

Compiling perl using the 64-bit Platform SDK tools is now supported.

The Win32::SetChildShowWindow() builtin can be used to control the
 visibility
of windows created by child processes. See Win32 for
 details.

Non-blocking waits for child processes (or pseudo-processes) are
 supported
via waitpid($pid, &POSIX::WNOHANG).

The behavior of system() with multiple arguments has been rationalized.
 Each
unquoted argument will be automatically quoted to protect whitespace,
 and any
existing whitespace in the arguments will be preserved. This
 improves the
portability of system(@args) by avoiding the need for
 Windows cmd shell
specific quoting in perl programs.

Note that this means that some scripts that may have relied on earlier
 buggy
behavior may no longer work correctly. For example, system("nmake
/nologo", @args) will now attempt to run the file nmake /nologo and will
fail when such a file isn't found.
 On the other hand, perl will now execute code
such as system("c:/Program Files/MyApp/foo.exe", @args)
correctly.

The perl header files no longer suppress common warnings from the
 Microsoft
Visual C++ compiler. This means that additional warnings may
 now show up
when compiling XS code.

Borland C++ v5.5 is now a supported compiler that can build Perl.
 However,
the generated binaries continue to be incompatible with those
 generated by the
other supported compilers (GCC and Visual C++). [561]

Duping socket handles with open(F, ">&MYSOCK") now works under Windows
9x.
 [561]

Current directory entries in %ENV are now correctly propagated to child

processes. [561]

New %ENV entries now propagate to subprocesses. [561]

Win32::GetCwd() correctly returns C:\ instead of C: when at the drive root.

Other bugs in chdir() and Cwd::cwd() have also been fixed. [561]

The makefiles now default to the features enabled in ActiveState ActivePerl
 (a
popular Win32 binary distribution). [561]

Perl version 5.8.8 documentation - perl58delta

Page 28http://perldoc.perl.org

HTML files will now be installed in c:\perl\html instead of
 c:\perl\lib\pod\html

REG_EXPAND_SZ keys are now allowed in registry settings used by perl.
[561]

Can now send() from all threads, not just the first one. [561]

ExtUtils::MakeMaker now uses $ENV{LIB} to search for libraries. [561]

Less stack reserved per thread so that more threads can run
 concurrently. (Still
16M per thread.) [561]

File::Spec->tmpdir() now prefers C:/temp over /tmp
 (works better when
perl is running as service).

Better UNC path handling under ithreads. [561]

wait(), waitpid(), and backticks now return the correct exit status
 under
Windows 9x. [561]

A socket handle leak in accept() has been fixed. [561]

New or Changed Diagnostics
Please see perldiag for more details.

Ambiguous range in the transliteration operator (like a-z-9) now
 gives a warning.

chdir("") and chdir(undef) now give a deprecation warning because they
 cause a possible
unintentional chdir to the home directory.
 Say chdir() if you really mean that.

Two new debugging options have been added: if you have compiled your
 Perl with debugging,
you can use the -DT [561] and -DR options to trace
 tokenising and to add reference counts to
displaying variables,
 respectively.

The lexical warnings category "deprecated" is no longer a sub-category
 of the "syntax"
category. It is now a top-level category in its own
 right.

Unadorned dump() will now give a warning suggesting to
 use explicit CORE::dump() if that's
what really is meant.

The "Unrecognized escape" warning has been extended to include \8, \9, and _. There is
no need to escape any of the \w characters.

All regular expression compilation error messages are now hopefully
 easier to understand
both because the error message now comes before
 the failed regex and because the point of
failure is now clearly
 marked by a <-- HERE marker.

Various I/O (and socket) functions like binmode(), close(), and so
 forth now more consistently
warn if they are used illogically either
 on a yet unopened or on an already closed filehandle (or
socket).

Using lstat() on a filehandle now gives a warning. (It's a non-sensical
 thing to do.)

The -M and -m options now warn if you didn't supply the module name.

If you in use specify a required minimum version, modules matching
 the name and but not
defining a $VERSION will cause a fatal failure.

Using negative offset for vec() in lvalue context is now a warnable offense.

Odd number of arguments to overload::constant now elicits a warning.

Odd number of elements in anonymous hash now elicits a warning.

Perl version 5.8.8 documentation - perl58delta

Page 29http://perldoc.perl.org

The various "opened only for", "on closed", "never opened" warnings
 drop the main:: prefix
for filehandles in the main package,
 for example STDIN instead of main::STDIN.

Subroutine prototypes are now checked more carefully, you may
 get warnings for example if
you have used non-prototype characters.

If an attempt to use a (non-blessed) reference as an array index
 is made, a warning is given.

push @a; and unshift @a; (with no values to push or unshift)
 now give a warning. This
may be a problem for generated and evaled
 code.

If you try to "pack" in perlfunc a number less than 0 or larger than 255
 using the "C" format
you will get an optional warning. Similarly
 for the "c" format and a number less than -128 or
more than 127.

pack P format now demands an explicit size.

unpack w now warns of unterminated compressed integers.

Warnings relating to the use of PerlIO have been added.

Certain regex modifiers such as (?o) make sense only if applied to
 the entire regex. You will
get an optional warning if you try to do
 otherwise.

Variable length lookbehind has not yet been implemented, trying to
 use it will tell that.

Using arrays or hashes as references (e.g. %foo->{bar}
 has been deprecated for a while.
Now you will get an optional warning.

Warnings relating to the use of the new restricted hashes feature
 have been added.

Self-ties of arrays and hashes are not supported and fatal errors
 will happen even at an
attempt to do so.

Using sort in scalar context now issues an optional warning.
 This didn't do anything useful,
as the sort was not performed.

Using the /g modifier in split() is meaningless and will cause a warning.

Using splice() past the end of an array now causes a warning.

Malformed Unicode encodings (UTF-8 and UTF-16) cause a lot of warnings,
 as does trying to
use UTF-16 surrogates (which are unimplemented).

Trying to use Unicode characters on an I/O stream without marking the
 stream's encoding
(using open() or binmode()) will cause "Wide character"
 warnings.

Use of v-strings in use/require causes a (backward) portability warning.

Warnings relating to the use interpreter threads and their shared data
 have been added.

Changed Internals
PerlIO is now the default.

perlapi.pod (a companion to perlguts) now attempts to document the
 internal API.

You can now build a really minimal perl called microperl.
 Building microperl does not require
even running Configure; make -f Makefile.micro should be enough. Beware: microperl
makes
 many assumptions, some of which may be too bold; the resulting
 executable may
crash or otherwise misbehave in wondrous ways.
 For careful hackers only.

Added rsignal(), whichsig(), do_join(), op_clear, op_null,
 ptr_table_clear(), ptr_table_free(),
sv_setref_uv(), and several UTF-8
 interfaces to the publicised API. For the full list of the

Perl version 5.8.8 documentation - perl58delta

Page 30http://perldoc.perl.org

available
 APIs see perlapi.

Made possible to propagate customised exceptions via croak()ing.

Now xsubs can have attributes just like subs. (Well, at least the
 built-in attributes.)

dTHR and djSP have been obsoleted; the former removed (because it's
 a no-op) and the latter
replaced with dSP.

PERL_OBJECT has been completely removed.

The MAGIC constants (e.g. 'P') have been macrofied
 (e.g. PERL_MAGIC_TIED) for better
source code readability
 and maintainability.

The regex compiler now maintains a structure that identifies nodes in
 the compiled bytecode
with the corresponding syntactic features of the
 original regex expression. The information is
attached to the new offsets member of the struct regexp. See perldebguts for more

complete information.

The C code has been made much more gcc -Wall clean. Some warning
 messages still
remain in some platforms, so if you are compiling with
 gcc you may see some warnings about
dubious practices. The warnings
 are being worked on.

perly.c, sv.c, and sv.h have now been extensively commented.

Documentation on how to use the Perl source repository has been added
 to
Porting/repository.pod.

There are now several profiling make targets.

Security Vulnerability Closed [561]
(This change was already made in 5.7.0 but bears repeating here.)
 (5.7.0 came out before 5.6.1: the
development branch 5.7 released
 earlier than the maintenance branch 5.6)

A potential security vulnerability in the optional suidperl component
 of Perl was identified in August
2000. suidperl is neither built nor
 installed by default. As of November 2001 the only known vulnerable
platform is Linux, most likely all Linux distributions. CERT and
 various vendors and distributors have
been alerted about the vulnerability.
 See
http://www.cpan.org/src/5.0/sperl-2000-08-05/sperl-2000-08-05.txt
 for more information.

The problem was caused by Perl trying to report a suspected security
 exploit attempt using an
external program, /bin/mail. On Linux
 platforms the /bin/mail program had an undocumented feature
which
 when combined with suidperl gave access to a root shell, resulting in
 a serious compromise
instead of reporting the exploit attempt. If you
 don't have /bin/mail, or if you have 'safe setuid scripts',
or if
 suidperl is not installed, you are safe.

The exploit attempt reporting feature has been completely removed from
 Perl 5.8.0 (and the
maintenance release 5.6.1, and it was removed also
 from all the Perl 5.7 releases), so that particular
vulnerability
 isn't there anymore. However, further security vulnerabilities are,
 unfortunately, always
possible. The suidperl functionality is most
 probably going to be removed in Perl 5.10. In any case,
suidperl
 should only be used by security experts who know exactly what they are
 doing and why they
are using suidperl instead of some other solution
 such as sudo (see http://www.courtesan.com/sudo/
).

New Tests
Several new tests have been added, especially for the lib and ext subsections. There are now about
69 000 individual tests
 (spread over about 700 test scripts), in the regression suite (5.6.1
 has about
11 700 tests, in 258 test scripts) The exact numbers depend
 on the platform and Perl configuration
used. Many of the new tests
 are of course introduced by the new modules, but still in general Perl
 is
now more thoroughly tested.

Perl version 5.8.8 documentation - perl58delta

Page 31http://perldoc.perl.org

Because of the large number of tests, running the regression suite
 will take considerably longer time
than it used to: expect the suite
 to take up to 4-5 times longer to run than in perl 5.6. On a really
 fast
machine you can hope to finish the suite in about 6-8 minutes
 (wallclock time).

The tests are now reported in a different order than in earlier Perls.
 (This happens because the test
scripts from under t/lib have been moved
 to be closer to the library/extension they are testing.)

Known Problems
The Compiler Suite Is Still Very Experimental

The compiler suite is slowly getting better but it continues to be
 highly experimental. Use in production
environments is discouraged.

Localising Tied Arrays and Hashes Is Broken
 local %tied_array;

doesn't work as one would expect: the old value is restored
 incorrectly. This will be changed in a
future release, but we don't
 know yet what the new semantics will exactly be. In any case, the
 change
will break existing code that relies on the current
 (ill-defined) semantics, so just avoid doing this in
general.

Building Extensions Can Fail Because Of Largefiles
Some extensions like mod_perl are known to have issues with
 `largefiles', a change brought by Perl
5.6.0 in which file offsets
 default to 64 bits wide, where supported. Modules may fail to compile
 at all,
or they may compile and work incorrectly. Currently, there
 is no good solution for the problem, but
Configure now provides
 appropriate non-largefile ccflags, ldflags, libswanted, and libs
 in the %Config
hash (e.g., $Config{ccflags_nolargefiles}) so the
 extensions that are having problems can try
configuring themselves
 without the largefileness. This is admittedly not a clean solution,
 and the
solution may not even work at all. One potential failure is
 whether one can (or, if one can, whether it's
a good idea to) link
 together at all binaries with different ideas about file offsets;
 all this is
platform-dependent.

Modifying $_ Inside for(..)
 for (1..5) { $_++ }

works without complaint. It shouldn't. (You should be able to
 modify only lvalue elements inside the
loops.) You can see the
 correct behaviour by replacing the 1..5 with 1, 2, 3, 4, 5.

mod_perl 1.26 Doesn't Build With Threaded Perl
Use mod_perl 1.27 or higher.

lib/ftmp-security tests warn 'system possibly insecure'
Don't panic. Read the 'make test' section of INSTALL instead.

libwww-perl (LWP) fails base/date #51
Use libwww-perl 5.65 or later.

PDL failing some tests
Use PDL 2.3.4 or later.

Perl_get_sv
You may get errors like 'Undefined symbol "Perl_get_sv"' or "can't
 resolve symbol 'Perl_get_sv'", or
the symbol may be "Perl_sv_2pv".
 This probably means that you are trying to use an older shared
Perl
 library (or extensions linked with such) with Perl 5.8.0 executable.
 Perl used to have such a
subroutine, but that is no more the case.
 Check your shared library path, and any shared Perl libraries
in those
 directories.

Perl version 5.8.8 documentation - perl58delta

Page 32http://perldoc.perl.org

Sometimes this problem may also indicate a partial Perl 5.8.0
 installation, see Mac OS X dyld
undefined symbols for an
 example and how to deal with it.

Self-tying Problems
Self-tying of arrays and hashes is broken in rather deep and
 hard-to-fix ways. As a stop-gap measure
to avoid people from getting
 frustrated at the mysterious results (core dumps, most often), it is

forbidden for now (you will get a fatal error even from an attempt).

A change to self-tying of globs has caused them to be recursively
 referenced (see: "Two-Phased
Garbage Collection" in perlobj). You
 will now need an explicit untie to destroy a self-tied glob. This

behaviour may be fixed at a later date.

Self-tying of scalars and IO thingies works.

ext/threads/t/libc
If this test fails, it indicates that your libc (C library) is not
 threadsafe. This particular test stress tests
the localtime() call to
 find out whether it is threadsafe. See perlthrtut for more information.

Failure of Thread (5.005-style) tests
Note that support for 5.005-style threading is deprecated,
 experimental and practically
unsupported. In 5.10, it is expected
 to be removed. You should migrate your code to ithreads.

The following tests are known to fail due to fundamental problems in
 the 5.005 threading
implementation. These are not new failures--Perl
 5.005_0x has the same bugs, but didn't have these
tests.

 ../ext/B/t/xref.t 255 65280 14 12 85.71% 3-14
 ../ext/List/Util/t/first.t 255 65280 7 4 57.14% 2 5-7
 ../lib/English.t 2 512 54 2 3.70% 2-3
 ../lib/FileCache.t 5 1 20.00% 5
 ../lib/Filter/Simple/t/data.t 6 3 50.00% 1-3
 ../lib/Filter/Simple/t/filter_only. 9 3 33.33% 1-2 5
 ../lib/Math/BigInt/t/bare_mbf.t 1627 4 0.25% 8 11
1626-1627
 ../lib/Math/BigInt/t/bigfltpm.t 1629 4 0.25% 10 13
1628-
 1629
 ../lib/Math/BigInt/t/sub_mbf.t 1633 4 0.24% 8 11
1632-1633
 ../lib/Math/BigInt/t/with_sub.t 1628 4 0.25% 9 12
1627-1628
 ../lib/Tie/File/t/31_autodefer.t 255 65280 65 32 49.23% 34-65
 ../lib/autouse.t 10 1 10.00% 4
 op/flip.t 15 1 6.67% 15

These failures are unlikely to get fixed as 5.005-style threads
 are considered fundamentally broken.
(Basically what happens is that
 competing threads can corrupt shared global state, one good example
being regular expression engine's state.)

Timing problems
The following tests may fail intermittently because of timing
 problems, for example if the system is
heavily loaded.

 t/op/alarm.t
 ext/Time/HiRes/HiRes.t
 lib/Benchmark.t
 lib/Memoize/t/expmod_t.t

Perl version 5.8.8 documentation - perl58delta

Page 33http://perldoc.perl.org

 lib/Memoize/t/speed.t

In case of failure please try running them manually, for example

 ./perl -Ilib ext/Time/HiRes/HiRes.t

Tied/Magical Array/Hash Elements Do Not Autovivify
For normal arrays $foo = \$bar[1] will assign undef to $bar[1] (assuming that it didn't exist
before), but for
 tied/magical arrays and hashes such autovivification does not happen
 because there
is currently no way to catch the reference creation.
 The same problem affects slicing over
non-existent indices/keys of
 a tied/magical array/hash.

Unicode in package/class and subroutine names does not work
One can have Unicode in identifier names, but not in package/class or
 subroutine names. While some
limited functionality towards this does
 exist as of Perl 5.8.0, that is more accidental than designed;
use of
 Unicode for the said purposes is unsupported.

One reason of this unfinishedness is its (currently) inherent
 unportability: since both package names
and subroutine names may
 need to be mapped to file and directory names, the Unicode capability
 of
the filesystem becomes important-- and there unfortunately aren't
 portable answers.

Platform Specific Problems
AIX

If using the AIX native make command, instead of just "make" issue
 "make all". In some
setups the former has been known to spuriously
 also try to run "make install". Alternatively,
you may want to use
 GNU make.

In AIX 4.2, Perl extensions that use C++ functions that use statics
 may have problems in that
the statics are not getting initialized.
 In newer AIX releases, this has been solved by linking
Perl with
 the libC_r library, but unfortunately in AIX 4.2 the said library
 has an obscure bug
where the various functions related to time
 (such as time() and gettimeofday()) return broken
values, and
 therefore in AIX 4.2 Perl is not linked against libC_r.

vac 5.0.0.0 May Produce Buggy Code For Perl

The AIX C compiler vac version 5.0.0.0 may produce buggy code,
 resulting in a few random
tests failing when run as part of "make
 test", but when the failing tests are run by hand, they
succeed.
 We suggest upgrading to at least vac version 5.0.1.0, that has been
 known to
compile Perl correctly. "lslpp -L|grep vac.C" will tell
 you the vac version. See README.aix.

If building threaded Perl, you may get compilation warning from pp_sys.c:

 "pp_sys.c", line 4651.39: 1506-280 (W) Function argument assignment
 between types "unsigned char*" and "const void*" is not allowed.

This is harmless; it is caused by the getnetbyaddr() and getnetbyaddr_r()
 having slightly
different types for their first argument.

Alpha systems with old gccs fail several tests
If you see op/pack, op/pat, op/regexp, or ext/Storable tests failing
 in a Linux/alpha or *BSD/Alpha, it's
probably time to upgrade your gcc.
 gccs prior to 2.95.3 are definitely not good enough, and gcc 3.1
may
 be even better. (RedHat Linux/alpha with gcc 3.1 reported no problems,
 as did Linux 2.4.18 with
gcc 2.95.4.) (In Tru64, it is preferable to
 use the bundled C compiler.)

AmigaOS
Perl 5.8.0 doesn't build in AmigaOS. It broke at some point during
 the ithreads work and we could not
find Amiga experts to unbreak the
 problems. Perl 5.6.1 still works for AmigaOS (as does the 5.7.2

development release).

Perl version 5.8.8 documentation - perl58delta

Page 34http://perldoc.perl.org

BeOS
The following tests fail on 5.8.0 Perl in BeOS Personal 5.03:

 t/op/lfs............................FAILED at test 17
 t/op/magic..........................FAILED at test 24
 ext/Fcntl/t/syslfs..................FAILED at test 17
 ext/File/Glob/t/basic...............FAILED at test 3
 ext/POSIX/t/sigaction...............FAILED at test 13
 ext/POSIX/t/waitpid.................FAILED at test 1

See perlbeos (README.beos) for more details.

Cygwin "unable to remap"
For example when building the Tk extension for Cygwin,
 you may get an error message saying
"unable to remap".
 This is known problem with Cygwin, and a workaround is
 detailed in here:
http://sources.redhat.com/ml/cygwin/2001-12/msg00894.html

Cygwin ndbm tests fail on FAT
One can build but not install (or test the build of) the NDBM_File
 on FAT filesystems. Installation (or
build) on NTFS works fine.
 If one attempts the test on a FAT install (or build) the following
 failures are
expected:

 ../ext/NDBM_File/ndbm.t 13 3328 71 59 83.10% 1-2 4 16-71
 ../ext/ODBM_File/odbm.t 255 65280 ?? ?? % ??
 ../lib/AnyDBM_File.t 2 512 12 2 16.67% 1 4
 ../lib/Memoize/t/errors.t 0 139 11 5 45.45% 7-11
 ../lib/Memoize/t/tie_ndbm.t 13 3328 4 4 100.00% 1-4
 run/fresh_perl.t 97 1 1.03% 91

NDBM_File fails and ODBM_File just coredumps.

If you intend to run only on FAT (or if using AnyDBM_File on FAT),
 run Configure with the -Ui_ndbm
and -Ui_dbm options to prevent
 NDBM_File and ODBM_File being built.

DJGPP Failures
 t/op/stat............................FAILED at test 29
 lib/File/Find/t/find.................FAILED at test 1
 lib/File/Find/t/taint................FAILED at test 1
 lib/h2xs.............................FAILED at test 15
 lib/Pod/t/eol........................FAILED at test 1
 lib/Test/Harness/t/strap-analyze.....FAILED at test 8
 lib/Test/Harness/t/test-harness......FAILED at test 23
 lib/Test/Simple/t/exit...............FAILED at test 1

The above failures are known as of 5.8.0 with native builds with long
 filenames, but there are a few
more if running under dosemu because of
 limitations (and maybe bugs) of dosemu:

 t/comp/cpp...........................FAILED at test 3
 t/op/inccode.........................(crash)

and a few lib/ExtUtils tests, and several hundred Encode/t/Aliases.t
 failures that work fine with long
filenames. So you really might
 prefer native builds and long filenames.

FreeBSD built with ithreads coredumps reading large directories
This is a known bug in FreeBSD 4.5's readdir_r(), it has been fixed in
 FreeBSD 4.6 (see perlfreebsd
(README.freebsd)).

Perl version 5.8.8 documentation - perl58delta

Page 35http://perldoc.perl.org

FreeBSD Failing locale Test 117 For ISO 8859-15 Locales
The ISO 8859-15 locales may fail the locale test 117 in FreeBSD.
 This is caused by the characters
\xFF (y with diaeresis) and \xBE
 (Y with diaeresis) not behaving correctly when being matched

case-insensitively. Apparently this problem has been fixed in
 the latest FreeBSD releases.
 (
http://www.freebsd.org/cgi/query-pr.cgi?pr=34308)

IRIX fails ext/List/Util/t/shuffle.t or Digest::MD5
IRIX with MIPSpro 7.3.1.2m or 7.3.1.3m compiler may fail the List::Util
 test ext/List/Util/t/shuffle.t by
dumping core. This seems to be
 a compiler error since if compiled with gcc no core dump ensues,
and
 no failures have been seen on the said test on any other platform.

Similarly, building the Digest::MD5 extension has been
 known to fail with "*** Termination code 139
(bu21)".

The cure is to drop optimization level (Configure -Doptimize=-O2).

HP-UX lib/posix Subtest 9 Fails When LP64-Configured
If perl is configured with -Duse64bitall, the successful result of the
 subtest 10 of lib/posix may arrive
before the successful result of the
 subtest 9, which confuses the test harness so much that it thinks
the
 subtest 9 failed.

Linux with glibc 2.2.5 fails t/op/int subtest #6 with -Duse64bitint
This is a known bug in the glibc 2.2.5 with long long integers.
 (
http://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=65612)

Linux With Sfio Fails op/misc Test 48
No known fix.

Mac OS X
Please remember to set your environment variable LC_ALL to "C"
 (setenv LC_ALL C) before running
"make test" to avoid a lot of
 warnings about the broken locales of Mac OS X.

The following tests are known to fail in Mac OS X 10.1.5 because of
 buggy (old) implementations of
Berkeley DB included in Mac OS X:

 Failed Test Stat Wstat Total Fail Failed List of Failed

 ../ext/DB_File/t/db-btree.t 0 11 ?? ?? % ??
 ../ext/DB_File/t/db-recno.t 149 3 2.01% 61 63 65

If you are building on a UFS partition, you will also probably see
 t/op/stat.t subtest #9 fail. This is
caused by Darwin's UFS not
 supporting inode change time.

Also the ext/POSIX/t/posix.t subtest #10 fails but it is skipped for
 now because the failure is Apple's
fault, not Perl's (blocked signals
 are lost).

If you Configure with ithreads, ext/threads/t/libc.t will fail. Again,
 this is not Perl's fault-- the libc of Mac
OS X is not threadsafe
 (in this particular test, the localtime() call is found to be
 threadunsafe.)

Mac OS X dyld undefined symbols
If after installing Perl 5.8.0 you are getting warnings about missing
 symbols, for example

 dyld: perl Undefined symbols
 _perl_sv_2pv
 _perl_get_sv

you probably have an old pre-Perl-5.8.0 installation (or parts of one)
 in /Library/Perl (the undefined

Perl version 5.8.8 documentation - perl58delta

Page 36http://perldoc.perl.org

symbols used to exist in pre-5.8.0 Perls).
 It seems that for some reason "make install" doesn't always
completely
 overwrite the files in /Library/Perl. You can move the old Perl
 shared library out of the way
like this:

 cd /Library/Perl/darwin/CORE
 mv libperl.dylib libperlold.dylib

and then reissue "make install". Note that the above of course is
 extremely disruptive for anything
using the /usr/local/bin/perl.
 If that doesn't help, you may have to try removing all the .bundle
 files
from beneath /Library/Perl, and again "make install"-ing.

OS/2 Test Failures
The following tests are known to fail on OS/2 (for clarity
 only the failures are shown, not the full error
messages):

 ../lib/ExtUtils/t/Mkbootstrap.t 1 256 18 1 5.56% 8
 ../lib/ExtUtils/t/Packlist.t 1 256 34 1 2.94% 17
 ../lib/ExtUtils/t/basic.t 1 256 17 1 5.88% 14
 lib/os2_process.t 2 512 227 2 0.88% 174 209
 lib/os2_process_kid.t 227 2 0.88% 174 209
 lib/rx_cmprt.t 255 65280 18 3 16.67% 16-18

op/sprintf tests 91, 129, and 130
The op/sprintf tests 91, 129, and 130 are known to fail on some platforms.
 Examples include any
platform using sfio, and Compaq/Tandem's NonStop-UX.

Test 91 is known to fail on QNX6 (nto), because sprintf '%e',0
 incorrectly produces
0.000000e+0 instead of 0.000000e+00.

For tests 129 and 130, the failing platforms do not comply with
 the ANSI C Standard: lines 19ff on
page 134 of ANSI X3.159 1989, to
 be exact. (They produce something other than "1" and "-1" when

formatting 0.6 and -0.6 using the printf format "%.0f"; most often,
 they produce "0" and "-0".)

SCO
The socketpair tests are known to be unhappy in SCO 3.2v5.0.4:

 ext/Socket/socketpair.t...............FAILED tests 15-45

Solaris 2.5
In case you are still using Solaris 2.5 (aka SunOS 5.5), you may
 experience failures (the test core
dumping) in lib/locale.t.
 The suggested cure is to upgrade your Solaris.

Solaris x86 Fails Tests With -Duse64bitint
The following tests are known to fail in Solaris x86 with Perl
 configured to use 64 bit integers:

 ext/Data/Dumper/t/dumper.............FAILED at test 268
 ext/Devel/Peek/Peek..................FAILED at test 7

SUPER-UX (NEC SX)
The following tests are known to fail on SUPER-UX:

 op/64bitint...........................FAILED tests 29-30, 32-33, 35-36
 op/arith..............................FAILED tests 128-130
 op/pack...............................FAILED tests 25-5625
 op/pow................................
 op/taint..............................# msgsnd failed

Perl version 5.8.8 documentation - perl58delta

Page 37http://perldoc.perl.org

 ../ext/IO/lib/IO/t/io_poll............FAILED tests 3-4
 ../ext/IPC/SysV/ipcsysv...............FAILED tests 2, 5-6
 ../ext/IPC/SysV/t/msg.................FAILED tests 2, 4-6
 ../ext/Socket/socketpair..............FAILED tests 12
 ../lib/IPC/SysV.......................FAILED tests 2, 5-6
 ../lib/warnings.......................FAILED tests 115-116, 118-119

The op/pack failure ("Cannot compress negative numbers at op/pack.t line 126")
 is serious but as of
yet unsolved. It points at some problems with the
 signedness handling of the C compiler, as do the
64bitint, arith, and pow
 failures. Most of the rest point at problems with SysV IPC.

Term::ReadKey not working on Win32
Use Term::ReadKey 2.20 or later.

UNICOS/mk
During Configure, the test

 Guessing which symbols your C compiler and preprocessor define...

will probably fail with error messages like

 CC-20 cc: ERROR File = try.c, Line = 3
 The identifier "bad" is undefined.

 bad switch yylook 79bad switch yylook 79bad switch yylook 79bad
 switch yylook 79#ifdef A29K
 ^

 CC-65 cc: ERROR File = try.c, Line = 3
 A semicolon is expected at this point.

This is caused by a bug in the awk utility of UNICOS/mk. You can ignore
 the error, but it does
cause a slight problem: you cannot fully
 benefit from the h2ph utility (see h2ph) that can be
used to
 convert C headers to Perl libraries, mainly used to be able to access
 from Perl the
constants defined using C preprocessor, cpp. Because of
 the above error, parts of the
converted headers will be invisible.
 Luckily, these days the need for h2ph is rare.

If building Perl with interpreter threads (ithreads), the
 getgrent(), getgrnam(), and getgrgid()
functions cannot return the
 list of the group members due to a bug in the multithreaded
support of
 UNICOS/mk. What this means is that in list context the functions will
 return only
three values, not four.

UTS
There are a few known test failures, see perluts (README.uts).

VOS (Stratus)
When Perl is built using the native build process on VOS Release
 14.5.0 and GNU C++/GNU Tools
2.0.1, all attempted tests either
 pass or result in TODO (ignored) failures.

VMS
There should be no reported test failures with a default configuration,
 though there are a number of
tests marked TODO that point to areas
 needing further debugging and/or porting work.

Win32
In multi-CPU boxes, there are some problems with the I/O buffering:
 some output may appear twice.

Perl version 5.8.8 documentation - perl58delta

Page 38http://perldoc.perl.org

XML::Parser not working
Use XML::Parser 2.31 or later.

z/OS (OS/390)
z/OS has rather many test failures but the situation is actually much
 better than it was in 5.6.0; it's just
that so many new modules and
 tests have been added.

 Failed Test Stat Wstat Total Fail Failed List of
Failed

 ../ext/Data/Dumper/t/dumper.t 357 8 2.24% 311 314 325
327
 331 333 337
339
 ../ext/IO/lib/IO/t/io_unix.t 5 4 80.00% 2-5
 ../ext/Storable/t/downgrade.t 12 3072 169 12 7.10% 14-15 46-47
78-79
 110-111 150
161
 ../lib/ExtUtils/t/Constant.t 121 30976 48 48 100.00% 1-48
 ../lib/ExtUtils/t/Embed.t 9 9 100.00% 1-9
 op/pat.t 922 7 0.76% 665 776 785
832-
 834 845
 op/sprintf.t 224 3 1.34% 98 100 136
 op/tr.t 97 5 5.15% 63 71-74
 uni/fold.t 780 6 0.77% 61 169 196
661
 710-711

The failures in dumper.t and downgrade.t are problems in the tests,
 those in io_unix and sprintf are
problems in the USS (UDP sockets and
 printf formats). The pat, tr, and fold failures are genuine Perl

problems caused by EBCDIC (and in the pat and fold cases, combining
 that with Unicode). The
Constant and Embed are probably problems in
 the tests (since they test Perl's ability to build
extensions, and
 that seems to be working reasonably well.)

Unicode Support on EBCDIC Still Spotty
Though mostly working, Unicode support still has problem spots on
 EBCDIC platforms. One such
known spot are the \p{} and \P{}
 regular expression constructs for code points less than 256: the
pP are testing for Unicode code points, not knowing about EBCDIC.

Seen In Perl 5.7 But Gone Now
Time::Piece (previously known as Time::Object) was removed
 because it was felt that it didn't
have enough value in it to be a
 core module. It is still a useful module, though, and is available
 from
the CPAN.

Perl 5.8 unfortunately does not build anymore on AmigaOS; this broke
 accidentally at some point.
Since there are not that many Amiga
 developers available, we could not get this fixed and tested in
time
 for 5.8.0. Perl 5.6.1 still works for AmigaOS (as does the 5.7.2
 development release).

The PerlIO::Scalar and PerlIO::Via (capitalised) were renamed as PerlIO::scalar and
PerlIO::via (all lowercase) just before 5.8.0.
 The main rationale was to have all core PerlIO layers
to have all
 lowercase names. The "plugins" are named as usual, for example
PerlIO::via::QuotedPrint.

The threads::shared::queue and threads::shared::semaphore were
 renamed as

Perl version 5.8.8 documentation - perl58delta

Page 39http://perldoc.perl.org

Thread::Queue and Thread::Semaphore just before 5.8.0.
 The main rationale was to have
thread modules to obey normal naming, Thread:: (the threads and threads::shared
themselves are
 more pragma-like, they affect compile-time, so they stay lowercase).

Reporting Bugs
If you find what you think is a bug, you might check the articles
 recently posted to the
comp.lang.perl.misc newsgroup and the perl
 bug database at http://bugs.perl.org/ . There may also be
information at http://www.perl.com/ , the Perl Home Page.

If you believe you have an unreported bug, please run the perlbug
 program included with your
release. Be sure to trim your bug down
 to a tiny but sufficient test case. Your bug report, along with
the
 output of perl -V, will be sent off to perlbug@perl.org to be
 analysed by the Perl porting team.

SEE ALSO
The Changes file for exhaustive details on what changed.

The INSTALL file for how to build Perl.

The README file for general stuff.

The Artistic and Copying files for copyright information.

HISTORY
Written by Jarkko Hietaniemi <jhi@iki.fi>.

