
Perl version 5.8.8 documentation - perlcompile

Page 1http://perldoc.perl.org

NAME
perlcompile - Introduction to the Perl Compiler-Translator

DESCRIPTION
Perl has always had a compiler: your source is compiled into an
 internal form (a parse tree) which is
then optimized before being
 run. Since version 5.005, Perl has shipped with a module
 capable of
inspecting the optimized parse tree (B), and this has
 been used to write many useful utilities, including
a module that lets
 you turn your Perl into C source code that can be compiled into a
 native
executable.

The B module provides access to the parse tree, and other modules
 ("back ends") do things with the
tree. Some write it out as
 bytecode, C source code, or a semi-human-readable text. Another
 traverses
the parse tree to build a cross-reference of which
 subroutines, formats, and variables are used where.
Another checks
 your code for dubious constructs. Yet another back end dumps the
 parse tree back
out as Perl source, acting as a source code beautifier
 or deobfuscator.

Because its original purpose was to be a way to produce C code
 corresponding to a Perl program,
and in turn a native executable, the B module and its associated back ends are known as "the

compiler", even though they don't really compile anything.
 Different parts of the compiler are more
accurately a "translator",
 or an "inspector", but people want Perl to have a "compiler
 option" not an
"inspector gadget". What can you do?

This document covers the use of the Perl compiler: which modules
 it comprises, how to use the most
important of the back end modules,
 what problems there are, and how to work around them.

Layout
The compiler back ends are in the B:: hierarchy, and the front-end
 (the module that you, the user of
the compiler, will sometimes
 interact with) is the O module. Some back ends (e.g., B::C) have

programs (e.g., perlcc) to hide the modules' complexity.

Here are the important back ends to know about, with their status
 expressed as a number from 0
(outline for later implementation) to
 10 (if there's a bug in it, we're very surprised):

B::Bytecode

Stores the parse tree in a machine-independent format, suitable
 for later reloading through the
ByteLoader module. Status: 5 (some
 things work, some things don't, some things are
untested).

B::C

Creates a C source file containing code to rebuild the parse tree
 and resume the interpreter.
Status: 6 (many things work adequately,
 including programs using Tk).

B::CC

Creates a C source file corresponding to the run time code path in
 the parse tree. This is the
closest to a Perl-to-C translator there
 is, but the code it generates is almost incomprehensible
because it
 translates the parse tree into a giant switch structure that
 manipulates Perl
structures. Eventual goal is to reduce (given
 sufficient type information in the Perl program)
some of the
 Perl data structure manipulations into manipulations of C-level
 ints, floats, etc.
Status: 5 (some things work, including
 uncomplicated Tk examples).

B::Lint

Complains if it finds dubious constructs in your source code. Status:
 6 (it works adequately,
but only has a very limited number of areas
 that it checks).

B::Deparse

Recreates the Perl source, making an attempt to format it coherently.
 Status: 8 (it works
nicely, but a few obscure things are missing).

Perl version 5.8.8 documentation - perlcompile

Page 2http://perldoc.perl.org

B::Xref

Reports on the declaration and use of subroutines and variables.
 Status: 8 (it works nicely, but
still has a few lingering bugs).

Using The Back Ends
The following sections describe how to use the various compiler back
 ends. They're presented
roughly in order of maturity, so that the
 most stable and proven back ends are described first, and the
most
 experimental and incomplete back ends are described last.

The O module automatically enabled the -c flag to Perl, which
 prevents Perl from executing your code
once it has been compiled.
 This is why all the back ends print:

 myperlprogram syntax OK

before producing any other output.

The Cross Referencing Back End
The cross referencing back end (B::Xref) produces a report on your program,
 breaking down
declarations and uses of subroutines and variables (and
 formats) by file and subroutine. For instance,
here's part of the
 report from the pod2man program that comes with Perl:

 Subroutine clear_noremap
 Package (lexical)
 $ready_to_print i1069, 1079
 Package main
 $& 1086
 $. 1086
 $0 1086
 $1 1087
 $2 1085, 1085
 $3 1085, 1085
 $ARGV 1086
 %HTML_Escapes 1085, 1085

This shows the variables used in the subroutine clear_noremap. The
 variable $ready_to_print
is a my() (lexical) variable, introduced (first declared with my()) on line 1069, and used on
 line 1079.
The variable $& from the main package is used on 1086,
 and so on.

A line number may be prefixed by a single letter:

i

Lexical variable introduced (declared with my()) for the first time.

&

Subroutine or method call.

s

Subroutine defined.

r

Format defined.

The most useful option the cross referencer has is to save the report
 to a separate file. For instance,
to save the report on myperlprogram to the file report:

 $ perl -MO=Xref,-oreport myperlprogram

Perl version 5.8.8 documentation - perlcompile

Page 3http://perldoc.perl.org

The Decompiling Back End
The Deparse back end turns your Perl source back into Perl source. It
 can reformat along the way,
making it useful as a de-obfuscator. The
 most basic way to use it is:

 $ perl -MO=Deparse myperlprogram

You'll notice immediately that Perl has no idea of how to paragraph
 your code. You'll have to separate
chunks of code from each other
 with newlines by hand. However, watch what it will do with
 one-liners:

 $ perl -MO=Deparse -e '$op=shift||die "usage: $0
 code [...]";chomp(@ARGV=<>)unless@ARGV; for(@ARGV){$was=$_;eval$op;
 die$@ if$@; rename$was,$_ unless$was eq $_}'
 -e syntax OK
 $op = shift @ARGV || die("usage: $0 code [...]");
 chomp(@ARGV = <ARGV>) unless @ARGV;
 foreach $_ (@ARGV) {
 $was = $_;
 eval $op;
 die $@ if $@;
 rename $was, $_ unless $was eq $_;
 }

The decompiler has several options for the code it generates. For
 instance, you can set the size of
each indent from 4 (as above) to
 2 with:

 $ perl -MO=Deparse,-si2 myperlprogram

The -p option adds parentheses where normally they are omitted:

 $ perl -MO=Deparse -e 'print "Hello, world\n"'
 -e syntax OK
 print "Hello, world\n";
 $ perl -MO=Deparse,-p -e 'print "Hello, world\n"'
 -e syntax OK
 print("Hello, world\n");

See B::Deparse for more information on the formatting options.

The Lint Back End
The lint back end (B::Lint) inspects programs for poor style. One
 programmer's bad style is another
programmer's useful tool, so options
 let you select what is complained about.

To run the style checker across your source code:

 $ perl -MO=Lint myperlprogram

To disable context checks and undefined subroutines:

 $ perl -MO=Lint,-context,-undefined-subs myperlprogram

See B::Lint for information on the options.

The Simple C Back End
This module saves the internal compiled state of your Perl program
 to a C source file, which can be
turned into a native executable
 for that particular platform using a C compiler. The resulting
 program
links against the Perl interpreter library, so it
 will not save you disk space (unless you build Perl with a

Perl version 5.8.8 documentation - perlcompile

Page 4http://perldoc.perl.org

shared
 library) or program size. It may, however, save you startup time.

The perlcc tool generates such executables by default.

 perlcc myperlprogram.pl

The Bytecode Back End
This back end is only useful if you also have a way to load and
 execute the bytecode that it produces.
The ByteLoader module provides
 this functionality.

To turn a Perl program into executable byte code, you can use perlcc
 with the -B switch:

 perlcc -B myperlprogram.pl

The byte code is machine independent, so once you have a compiled
 module or program, it is as
portable as Perl source (assuming that
 the user of the module or program has a modern-enough Perl
interpreter
 to decode the byte code).

See B::Bytecode for information on options to control the
 optimization and nature of the code
generated by the Bytecode module.

The Optimized C Back End
The optimized C back end will turn your Perl program's run time
 code-path into an equivalent (but
optimized) C program that manipulates
 the Perl data structures directly. The program will still link
against
 the Perl interpreter library, to allow for eval(), s///e, require, etc.

The perlcc tool generates such executables when using the -O
 switch. To compile a Perl program
(ending in .pl
 or .p):

 perlcc -O myperlprogram.pl

To produce a shared library from a Perl module (ending in .pm):

 perlcc -O Myperlmodule.pm

For more information, see perlcc and B::CC.

Module List for the Compiler Suite
B

This module is the introspective ("reflective" in Java terms)
 module, which allows a Perl
program to inspect its innards. The
 back end modules all use this module to gain access to
the compiled
 parse tree. You, the user of a back end module, will not need to
 interact with B.

O

This module is the front-end to the compiler's back ends. Normally
 called something like this:

 $ perl -MO=Deparse myperlprogram

This is like saying use O 'Deparse' in your Perl program.

B::Asmdata

This module is used by the B::Assembler module, which is in turn used
 by the B::Bytecode
module, which stores a parse-tree as
 bytecode for later loading. It's not a back end itself, but
rather a
 component of a back end.

B::Assembler

This module turns a parse-tree into data suitable for storing
 and later decoding back into a

Perl version 5.8.8 documentation - perlcompile

Page 5http://perldoc.perl.org

parse-tree. It's not a back end
 itself, but rather a component of a back end. It's used by the
assemble program that produces bytecode.

B::Bblock

This module is used by the B::CC back end. It walks "basic blocks".
 A basic block is a series
of operations which is known to execute from
 start to finish, with no possibility of branching or
halting.

B::Bytecode

This module is a back end that generates bytecode from a
 program's parse tree. This
bytecode is written to a file, from where
 it can later be reconstructed back into a parse tree.
The goal is to
 do the expensive program compilation once, save the interpreter's
 state into a
file, and then restore the state from the file when the
 program is to be executed. See The
Bytecode Back End
 for details about usage.

B::C

This module writes out C code corresponding to the parse tree and
 other interpreter internal
structures. You compile the corresponding
 C file, and get an executable file that will restore
the internal
 structures and the Perl interpreter will begin running the
 program. See The Simple
C Back End for details about usage.

B::CC

This module writes out C code corresponding to your program's
 operations. Unlike the B::C
module, which merely stores the
 interpreter and its state in a C program, the B::CC module
makes a
 C program that does not involve the interpreter. As a consequence,
 programs
translated into C by B::CC can execute faster than normal
 interpreted programs. See The
Optimized C Back End for
 details about usage.

B::Concise

This module prints a concise (but complete) version of the Perl parse
 tree. Its output is more
customizable than the one of B::Terse or
 B::Debug (and it can emulate them). This module
useful for people who
 are writing their own back end, or who are learning about the Perl

internals. It's not useful to the average programmer.

B::Debug

This module dumps the Perl parse tree in verbose detail to STDOUT.
 It's useful for people
who are writing their own back end, or who
 are learning about the Perl internals. It's not useful
to the
 average programmer.

B::Deparse

This module produces Perl source code from the compiled parse tree.
 It is useful in debugging
and deconstructing other people's code,
 also as a pretty-printer for your own source. See The
Decompiling Back End for details about usage.

B::Disassembler

This module turns bytecode back into a parse tree. It's not a back
 end itself, but rather a
component of a back end. It's used by the disassemble program that comes with the
bytecode.

B::Lint

This module inspects the compiled form of your source code for things
 which, while some
people frown on them, aren't necessarily bad enough
 to justify a warning. For instance, use of
an array in scalar context
 without explicitly saying scalar(@array) is something that Lint

can identify. See The Lint Back End for details about usage.

B::Showlex

Perl version 5.8.8 documentation - perlcompile

Page 6http://perldoc.perl.org

This module prints out the my() variables used in a function or a
 file. To get a list of the my()
variables used in the subroutine
 mysub() defined in the file myperlprogram:

 $ perl -MO=Showlex,mysub myperlprogram

To get a list of the my() variables used in the file myperlprogram:

 $ perl -MO=Showlex myperlprogram

[BROKEN]

B::Stackobj

This module is used by the B::CC module. It's not a back end itself,
 but rather a component of
a back end.

B::Stash

This module is used by the perlcc program, which compiles a module
 into an executable.
B::Stash prints the symbol tables in use by a
 program, and is used to prevent B::CC from
producing C code for the
 B::* and O modules. It's not a back end itself, but rather a

component of a back end.

B::Terse

This module prints the contents of the parse tree, but without as much
 information as
B::Debug. For comparison, print "Hello, world."
 produced 96 lines of output from
B::Debug, but only 6 from B::Terse.

This module is useful for people who are writing their own back end,
 or who are learning about
the Perl internals. It's not useful to the
 average programmer.

B::Xref

This module prints a report on where the variables, subroutines, and
 formats are defined and
used within a program and the modules it
 loads. See The Cross Referencing Back End for
details about
 usage.

KNOWN PROBLEMS
The simple C backend currently only saves typeglobs with alphanumeric
 names.

The optimized C backend outputs code for more modules than it should
 (e.g., DirHandle). It also has
little hope of properly handling goto LABEL outside the running subroutine (goto &sub is okay).
goto LABEL currently does not work at all in this backend.
 It also creates a huge initialization
function that gives
 C compilers headaches. Splitting the initialization function gives
 better results.
Other problems include: unsigned math does not
 work correctly; some opcodes are handled
incorrectly by default
 opcode handling mechanism.

BEGIN{} blocks are executed while compiling your code. Any external
 state that is initialized in
BEGIN{}, such as opening files, initiating
 database connections etc., do not behave properly. To work
around
 this, Perl has an INIT{} block that corresponds to code being executed
 before your program
begins running but after your program has finished
 being compiled. Execution order: BEGIN{},
(possible save of state
 through compiler back-end), INIT{}, program runs, END{}.

AUTHOR
This document was originally written by Nathan Torkington, and is now
 maintained by the
perl5-porters mailing list perl5-porters@perl.org.

