
Perl version 5.8.8 documentation - perldata

Page 1http://perldoc.perl.org

NAME
perldata - Perl data types

DESCRIPTION
Variable names

Perl has three built-in data types: scalars, arrays of scalars, and
 associative arrays of scalars, known
as "hashes". A scalar is a single string (of any size, limited only by the available memory),
 number, or
a reference to something (which will be discussed
 in perlref). Normal arrays are ordered lists of
scalars indexed
 by number, starting with 0. Hashes are unordered collections of scalar values
indexed by their associated string key.

Values are usually referred to by name, or through a named reference.
 The first character of the
name tells you to what sort of data
 structure it refers. The rest of the name tells you the particular

value to which it refers. Usually this name is a single identifier,
 that is, a string beginning with a letter
or underscore, and
 containing letters, underscores, and digits. In some cases, it may
 be a chain of
identifiers, separated by :: (or by the slightly
 archaic '); all but the last are interpreted as names of
packages,
 to locate the namespace in which to look up the final identifier
 (see "Packages" in perlmod
for details). It's possible to substitute
 for a simple identifier, an expression that produces a reference

to the value at runtime. This is described in more detail below
 and in perlref.

Perl also has its own built-in variables whose names don't follow
 these rules. They have strange
names so they don't accidentally
 collide with one of your normal variables. Strings that match

parenthesized parts of a regular expression are saved under names
 containing only digits after the $
(see perlop and perlre).
 In addition, several special variables that provide windows into
 the inner
working of Perl have names containing punctuation characters
 and control characters. These are
documented in perlvar.

Scalar values are always named with '$', even when referring to a
 scalar that is part of an array or a
hash. The '$' symbol works
 semantically like the English word "the" in that it indicates a
 single value is
expected.

 $days		 # the simple scalar value "days"
 $days[28]		 # the 29th element of array @days
 $days{'Feb'}	 # the 'Feb' value from hash %days
 $#days		 # the last index of array @days

Entire arrays (and slices of arrays and hashes) are denoted by '@',
 which works much like the word
"these" or "those" does in English,
 in that it indicates multiple values are expected.

 @days		 # ($days[0], $days[1],... $days[n])
 @days[3,4,5]	 # same as ($days[3],$days[4],$days[5])
 @days{'a','c'}	 # same as ($days{'a'},$days{'c'})

Entire hashes are denoted by '%':

 %days		 # (key1, val1, key2, val2 ...)

In addition, subroutines are named with an initial '&', though this
 is optional when unambiguous, just
as the word "do" is often redundant
 in English. Symbol table entries can be named with an initial '*',

but you don't really care about that yet (if ever :-).

Every variable type has its own namespace, as do several
 non-variable identifiers. This means that
you can, without fear
 of conflict, use the same name for a scalar variable, an array, or
 a hash--or, for
that matter, for a filehandle, a directory handle, a
 subroutine name, a format name, or a label. This
means that $foo
 and @foo are two different variables. It also means that $foo[1]
 is a part of @foo,
not a part of $foo. This may seem a bit weird,
 but that's okay, because it is weird.

Perl version 5.8.8 documentation - perldata

Page 2http://perldoc.perl.org

Because variable references always start with '$', '@', or '%', the
 "reserved" words aren't in fact
reserved with respect to variable
 names. They are reserved with respect to labels and filehandles,

however, which don't have an initial special character. You can't
 have a filehandle named "log", for
instance. Hint: you could say open(LOG,'logfile') rather than open(log,'logfile'). Using

uppercase filehandles also improves readability and protects you
 from conflict with future reserved
words. Case is significant--"FOO",
 "Foo", and "foo" are all different names. Names that start with a

letter or underscore may also contain digits and underscores.

It is possible to replace such an alphanumeric name with an expression
 that returns a reference to the
appropriate type. For a description
 of this, see perlref.

Names that start with a digit may contain only more digits. Names
 that do not start with a letter,
underscore, digit or a caret (i.e.
 a control character) are limited to one character, e.g., $% or $$. (Most
of these one character names have a predefined
 significance to Perl. For instance, $$ is the current
process
 id.)

Context
The interpretation of operations and values in Perl sometimes depends
 on the requirements of the
context around the operation or value.
 There are two major contexts: list and scalar. Certain
operations
 return list values in contexts wanting a list, and scalar values
 otherwise. If this is true of an
operation it will be mentioned in
 the documentation for that operation. In other words, Perl overloads

certain operations based on whether the expected return value is
 singular or plural. Some words in
English work this way, like "fish"
 and "sheep".

In a reciprocal fashion, an operation provides either a scalar or a
 list context to each of its arguments.
For example, if you say

 int(<STDIN>)

the integer operation provides scalar context for the <>
 operator, which responds by reading one line
from STDIN and passing it
 back to the integer operation, which will then find the integer value
 of that
line and return that. If, on the other hand, you say

 sort(<STDIN>)

then the sort operation provides list context for <>, which
 will proceed to read every line available up
to the end of file, and
 pass that list of lines back to the sort routine, which will then
 sort those lines and
return them as a list to whatever the context
 of the sort was.

Assignment is a little bit special in that it uses its left argument
 to determine the context for the right
argument. Assignment to a
 scalar evaluates the right-hand side in scalar context, while
 assignment to
an array or hash evaluates the righthand side in list
 context. Assignment to a list (or slice, which is just
a list
 anyway) also evaluates the righthand side in list context.

When you use the use warnings pragma or Perl's -w command-line option, you may see warnings

about useless uses of constants or functions in "void context".
 Void context just means the value has
been discarded, such as a
 statement containing only "fred"; or getpwuid(0);. It still
 counts as
scalar context for functions that care whether or not
 they're being called in list context.

User-defined subroutines may choose to care whether they are being
 called in a void, scalar, or list
context. Most subroutines do not
 need to bother, though. That's because both scalars and lists are

automatically interpolated into lists. See "wantarray" in perlfunc
 for how you would dynamically
discern your function's calling
 context.

Scalar values
All data in Perl is a scalar, an array of scalars, or a hash of
 scalars. A scalar may contain one single
value in any of three
 different flavors: a number, a string, or a reference. In general,
 conversion from
one form to another is transparent. Although a
 scalar may not directly hold multiple values, it may

Perl version 5.8.8 documentation - perldata

Page 3http://perldoc.perl.org

contain a
 reference to an array or hash which in turn contains multiple values.

Scalars aren't necessarily one thing or another. There's no place
 to declare a scalar variable to be of
type "string", type "number",
 type "reference", or anything else. Because of the automatic
 conversion
of scalars, operations that return scalars don't need
 to care (and in fact, cannot care) whether their
caller is looking
 for a string, a number, or a reference. Perl is a contextually
 polymorphic language
whose scalars can be strings, numbers, or
 references (which includes objects). Although strings and
numbers
 are considered pretty much the same thing for nearly all purposes,
 references are
strongly-typed, uncastable pointers with builtin
 reference-counting and destructor invocation.

A scalar value is interpreted as TRUE in the Boolean sense if it is not
 the null string or the number 0
(or its string equivalent, "0"). The
 Boolean context is just a special kind of scalar context where no
conversion to a string or a number is ever performed.

There are actually two varieties of null strings (sometimes referred
 to as "empty" strings), a defined
one and an undefined one. The
 defined version is just a string of length zero, such as "".
 The
undefined version is the value that indicates that there is
 no real value for something, such as when
there was an error, or
 at end of file, or when you refer to an uninitialized variable or
 element of an
array or hash. Although in early versions of Perl,
 an undefined scalar could become defined when first
used in a
 place expecting a defined value, this no longer happens except for
 rare cases of
autovivification as explained in perlref. You can
 use the defined() operator to determine whether a
scalar value is
 defined (this has no meaning on arrays or hashes), and the undef()
 operator to
produce an undefined value.

To find out whether a given string is a valid non-zero number, it's
 sometimes enough to test it against
both numeric 0 and also lexical
 "0" (although this will cause noises if warnings are on). That's
because strings that aren't numbers count as 0, just as they do in awk:

 if ($str == 0 && $str ne "0") {
	 warn "That doesn't look like a number";
 }

That method may be best because otherwise you won't treat IEEE
 notations like NaN or Infinity
properly. At other times, you
 might prefer to determine whether string data can be used numerically

by calling the POSIX::strtod() function or by inspecting your string
 with a regular expression (as
documented in perlre).

 warn "has nondigits"	 if /\D/;
 warn "not a natural number" unless /^\d+$/; # rejects -3
 warn "not an integer" unless /^-?\d+$/; # rejects +3
 warn "not an integer" unless /^[+-]?\d+$/;
 warn "not a decimal number" unless /^-?\d+\.?\d*$/; # rejects .2
 warn "not a decimal number" unless /^-?(?:\d+(?:\.\d*)?|\.\d+)$/;
 warn "not a C float"
	 unless /^([+-]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+-]?\d+))?$/;

The length of an array is a scalar value. You may find the length
 of array @days by evaluating
$#days, as in csh. However, this
 isn't the length of the array; it's the subscript of the last element,

which is a different value since there is ordinarily a 0th element.
 Assigning to $#days actually
changes the length of the array.
 Shortening an array this way destroys intervening values.
Lengthening
 an array that was previously shortened does not recover values
 that were in those
elements. (It used to do so in Perl 4, but we
 had to break this to make sure destructors were called
when expected.)

You can also gain some minuscule measure of efficiency by pre-extending
 an array that is going to
get big. You can also extend an array
 by assigning to an element that is off the end of the array. You

can truncate an array down to nothing by assigning the null list
 () to it. The following are equivalent:

Perl version 5.8.8 documentation - perldata

Page 4http://perldoc.perl.org

 @whatever = ();
 $#whatever = -1;

If you evaluate an array in scalar context, it returns the length
 of the array. (Note that this is not true of
lists, which return
 the last value, like the C comma operator, nor of built-in functions,
 which return
whatever they feel like returning.) The following is
 always true:

 scalar(@whatever) == $#whatever - $[+ 1;

Version 5 of Perl changed the semantics of $[: files that don't set
 the value of $[no longer need to
worry about whether another
 file changed its value. (In other words, use of $[is deprecated.)
 So in
general you can assume that

 scalar(@whatever) == $#whatever + 1;

Some programmers choose to use an explicit conversion so as to leave nothing to doubt:

 $element_count = scalar(@whatever);

If you evaluate a hash in scalar context, it returns false if the
 hash is empty. If there are any key/value
pairs, it returns true;
 more precisely, the value returned is a string consisting of the
 number of used
buckets and the number of allocated buckets, separated
 by a slash. This is pretty much useful only to
find out whether
 Perl's internal hashing algorithm is performing poorly on your data
 set. For example,
you stick 10,000 things in a hash, but evaluating
 %HASH in scalar context reveals "1/16", which
means only one out
 of sixteen buckets has been touched, and presumably contains all
 10,000 of your
items. This isn't supposed to happen.

You can preallocate space for a hash by assigning to the keys() function.
 This rounds up the allocated
buckets to the next power of two:

 keys(%users) = 1000;		 # allocate 1024 buckets

Scalar value constructors
Numeric literals are specified in any of the following floating point or
 integer formats:

 12345
 12345.67
 .23E-10 # a very small number
 3.14_15_92 # a very important number
 4_294_967_296 # underscore for legibility
 0xff # hex
 0xdead_beef # more hex
 0377 # octal (only numbers, begins with 0)
 0b011011 # binary

You are allowed to use underscores (underbars) in numeric literals
 between digits for legibility. You
could, for example, group binary
 digits by threes (as for a Unix-style mode argument such as
0b110_100_100)
 or by fours (to represent nibbles, as in 0b1010_0110) or in other groups.

String literals are usually delimited by either single or double
 quotes. They work much like quotes in
the standard Unix shells:
 double-quoted string literals are subject to backslash and variable

substitution; single-quoted strings are not (except for \' and \\). The usual C-style backslash rules
apply for making
 characters such as newline, tab, etc., as well as some more exotic
 forms. See
"Quote and Quote-like Operators" in perlop for a list.

Hexadecimal, octal, or binary, representations in string literals
 (e.g. '0xff') are not automatically

Perl version 5.8.8 documentation - perldata

Page 5http://perldoc.perl.org

converted to their integer
 representation. The hex() and oct() functions make these conversions
 for
you. See "hex" in perlfunc and "oct" in perlfunc for more details.

You can also embed newlines directly in your strings, i.e., they can end
 on a different line than they
begin. This is nice, but if you forget
 your trailing quote, the error will not be reported until Perl finds

another line containing the quote character, which may be much further
 on in the script. Variable
substitution inside strings is limited to
 scalar variables, arrays, and array or hash slices. (In other
words,
 names beginning with $ or @, followed by an optional bracketed
 expression as a subscript.)
The following code segment prints out "The
 price is $100."

 $Price = '$100';	 # not interpolated
 print "The price is $Price.\n";	 # interpolated

There is no double interpolation in Perl, so the $100 is left as is.

As in some shells, you can enclose the variable name in braces to
 disambiguate it from following
alphanumerics (and underscores).
 You must also do
 this when interpolating a variable into a string to
separate the
 variable name from a following double-colon or an apostrophe, since
 these would be
otherwise treated as a package separator:

 $who = "Larry";
 print PASSWD "${who}::0:0:Superuser:/:/bin/perl\n";
 print "We use ${who}speak when ${who}'s here.\n";

Without the braces, Perl would have looked for a $whospeak, a $who::0, and a $who's variable.
The last two would be the
 $0 and the $s variables in the (presumably) non-existent package who.

In fact, an identifier within such curlies is forced to be a string,
 as is any simple identifier within a hash
subscript. Neither need
 quoting. Our earlier example, $days{'Feb'} can be written as $days{Feb}
and the quotes will be assumed automatically. But
 anything more complicated in the subscript will be
interpreted as an
 expression. This means for example that $version{2.0}++ is
 equivalent to
$version{2}++, not to $version{'2.0'}++.

Version Strings

Note: Version Strings (v-strings) have been deprecated. They will
 not be available after Perl 5.8. The
marginal benefits of v-strings
 were greatly outweighed by the potential for Surprise and Confusion.

A literal of the form v1.20.300.4000 is parsed as a string composed
 of characters with the
specified ordinals. This form, known as
 v-strings, provides an alternative, more readable way to
construct
 strings, rather than use the somewhat less readable interpolation form
"\x{1}\x{14}\x{12c}\x{fa0}". This is useful for representing
 Unicode strings, and for
comparing version "numbers" using the string
 comparison operators, cmp, gt, lt etc. If there are two
or
 more dots in the literal, the leading v may be omitted.

 print v9786; # prints UTF-8 encoded SMILEY, "\x{263a}"
 print v102.111.111; # prints "foo"
 print 102.111.111; # same

Such literals are accepted by both require and use for
 doing a version check. The $^V special
variable also contains the
 running Perl interpreter's version in this form. See "$^V" in perlvar.
 Note
that using the v-strings for IPv4 addresses is not portable unless
 you also use the
inet_aton()/inet_ntoa() routines of the Socket package.

Note that since Perl 5.8.1 the single-number v-strings (like v65)
 are not v-strings before the =>
operator (which is usually used
 to separate a hash key from a hash value), instead they are
interpreted
 as literal strings ('v65'). They were v-strings from Perl 5.6.0 to
 Perl 5.8.0, but that caused
more confusion and breakage than good.
 Multi-number v-strings like v65.66 and 65.66.67
continue to
 be v-strings always.

Perl version 5.8.8 documentation - perldata

Page 6http://perldoc.perl.org

Special Literals

The special literals __FILE__, __LINE__, and __PACKAGE__
 represent the current filename, line
number, and package name at that
 point in your program. They may be used only as separate
tokens; they
 will not be interpolated into strings. If there is no current package
 (due to an empty
package; directive), __PACKAGE__ is the undefined
 value.

The two control characters ^D and ^Z, and the tokens __END__ and __DATA__
 may be used to
indicate the logical end of the script before the actual
 end of file. Any following text is ignored.

Text after __DATA__ but may be read via the filehandle PACKNAME::DATA,
 where PACKNAME is the
package that was current when the __DATA__
 token was encountered. The filehandle is left open
pointing to the
 contents after __DATA__. It is the program's responsibility to close DATA when it is
done reading from it. For compatibility with
 older scripts written before __DATA__ was introduced,
__END__ behaves
 like __DATA__ in the toplevel script (but not in files loaded with require or do)
and leaves the remaining contents of the
 file accessible via main::DATA.

See SelfLoader for more description of __DATA__, and
 an example of its use. Note that you cannot
read from the DATA
 filehandle in a BEGIN block: the BEGIN block is executed as soon
 as it is seen
(during compilation), at which point the corresponding
 __DATA__ (or __END__) token has not yet
been seen.

Barewords

A word that has no other interpretation in the grammar will
 be treated as if it were a quoted string.
These are known as
 "barewords". As with filehandles and labels, a bareword that consists
 entirely of
lowercase letters risks conflict with future reserved
 words, and if you use the use warnings pragma
or the -w switch, Perl will warn you about any
 such words. Some people may wish to outlaw
barewords entirely. If you
 say

 use strict 'subs';

then any bareword that would NOT be interpreted as a subroutine call
 produces a compile-time error
instead. The restriction lasts to the
 end of the enclosing block. An inner block may countermand this

by saying no strict 'subs'.

Array Joining Delimiter

Arrays and slices are interpolated into double-quoted strings
 by joining the elements with the delimiter
specified in the $"
 variable ($LIST_SEPARATOR if "use English;" is specified), space by default. The
following are equivalent:

 $temp = join($", @ARGV);
 system "echo $temp";

 system "echo @ARGV";

Within search patterns (which also undergo double-quotish substitution)
 there is an unfortunate
ambiguity: Is /$foo[bar]/ to be interpreted as /${foo}[bar]/ (where [bar] is a character class
for the regular
 expression) or as /${foo[bar]}/ (where [bar] is the subscript to array
 @foo)? If
@foo doesn't otherwise exist, then it's obviously a
 character class. If @foo exists, Perl takes a good
guess about [bar],
 and is almost always right. If it does guess wrong, or if you're just
 plain paranoid,
you can force the correct interpretation with curly
 braces as above.

If you're looking for the information on how to use here-documents,
 which used to be here, that's been
moved to "Quote and Quote-like Operators" in perlop.

List value constructors
List values are denoted by separating individual values by commas
 (and enclosing the list in
parentheses where precedence requires it):

Perl version 5.8.8 documentation - perldata

Page 7http://perldoc.perl.org

 (LIST)

In a context not requiring a list value, the value of what appears
 to be a list literal is simply the value of
the final element, as
 with the C comma operator. For example,

 @foo = ('cc', '-E', $bar);

assigns the entire list value to array @foo, but

 $foo = ('cc', '-E', $bar);

assigns the value of variable $bar to the scalar variable $foo.
 Note that the value of an actual array in
scalar context is the
 length of the array; the following assigns the value 3 to $foo:

 @foo = ('cc', '-E', $bar);
 $foo = @foo; # $foo gets 3

You may have an optional comma before the closing parenthesis of a
 list literal, so that you can say:

 @foo = (
 1,
 2,
 3,
);

To use a here-document to assign an array, one line per element,
 you might use an approach like
this:

 @sauces = <<End_Lines =~ m/(\S.*\S)/g;
 normal tomato
 spicy tomato
 green chile
 pesto
 white wine
 End_Lines

LISTs do automatic interpolation of sublists. That is, when a LIST is
 evaluated, each element of the
list is evaluated in list context, and
 the resulting list value is interpolated into LIST just as if each

individual element were a member of LIST. Thus arrays and hashes lose their
 identity in a LIST--the
list

 (@foo,@bar,&SomeSub,%glarch)

contains all the elements of @foo followed by all the elements of @bar,
 followed by all the elements
returned by the subroutine named SomeSub called in list context, followed by the key/value pairs of
%glarch.
 To make a list reference that does NOT interpolate, see perlref.

The null list is represented by (). Interpolating it in a list
 has no effect. Thus ((),(),()) is equivalent to ().
Similarly,
 interpolating an array with no elements is the same as if no
 array had been interpolated at
that point.

This interpolation combines with the facts that the opening
 and closing parentheses are optional
(except when necessary for
 precedence) and lists may end with an optional comma to mean that

multiple commas within lists are legal syntax. The list 1,,3 is a
 concatenation of two lists, 1, and 3,
the first of which ends
 with that optional comma. 1,,3 is (1,),(3) is 1,3 (And
 similarly for 1,,,3
is (1,),(,),3 is 1,3 and so on.) Not that
 we'd advise you to use this obfuscation.

Perl version 5.8.8 documentation - perldata

Page 8http://perldoc.perl.org

A list value may also be subscripted like a normal array. You must
 put the list in parentheses to avoid
ambiguity. For example:

 # Stat returns list value.
 $time = (stat($file))[8];

 # SYNTAX ERROR HERE.
 $time = stat($file)[8]; # OOPS, FORGOT PARENTHESES

 # Find a hex digit.
 $hexdigit = ('a','b','c','d','e','f')[$digit-10];

 # A "reverse comma operator".
 return (pop(@foo),pop(@foo))[0];

Lists may be assigned to only when each element of the list
 is itself legal to assign to:

 ($a, $b, $c) = (1, 2, 3);

 ($map{'red'}, $map{'blue'}, $map{'green'}) = (0x00f, 0x0f0, 0xf00);

An exception to this is that you may assign to undef in a list.
 This is useful for throwing away some of
the return values of a
 function:

 ($dev, $ino, undef, undef, $uid, $gid) = stat($file);

List assignment in scalar context returns the number of elements
 produced by the expression on the
right side of the assignment:

 $x = (($foo,$bar) = (3,2,1)); # set $x to 3, not 2
 $x = (($foo,$bar) = f()); # set $x to f()'s return count

This is handy when you want to do a list assignment in a Boolean
 context, because most list functions
return a null list when finished,
 which when assigned produces a 0, which is interpreted as FALSE.

It's also the source of a useful idiom for executing a function or
 performing an operation in list context
and then counting the number of
 return values, by assigning to an empty list and then using that

assignment in scalar context. For example, this code:

 $count = () = $string =~ /\d+/g;

will place into $count the number of digit groups found in $string.
 This happens because the pattern
match is in list context (since it
 is being assigned to the empty list), and will therefore return a list
 of all
matching parts of the string. The list assignment in scalar
 context will translate that into the number of
elements (here, the
 number of times the pattern matched) and assign that to $count. Note
 that simply
using

 $count = $string =~ /\d+/g;

would not have worked, since a pattern match in scalar context will
 only return true or false, rather
than a count of matches.

The final element of a list assignment may be an array or a hash:

 ($a, $b, @rest) = split;
 my($a, $b, %rest) = @_;

Perl version 5.8.8 documentation - perldata

Page 9http://perldoc.perl.org

You can actually put an array or hash anywhere in the list, but the first one
 in the list will soak up all
the values, and anything after it will become
 undefined. This may be useful in a my() or local().

A hash can be initialized using a literal list holding pairs of
 items to be interpreted as a key and a
value:

 # same as map assignment above
 %map = ('red',0x00f,'blue',0x0f0,'green',0xf00);

While literal lists and named arrays are often interchangeable, that's
 not the case for hashes. Just
because you can subscript a list value like
 a normal array does not mean that you can subscript a list
value as a
 hash. Likewise, hashes included as parts of other lists (including
 parameters lists and
return lists from functions) always flatten out into
 key/value pairs. That's why it's good to use
references sometimes.

It is often more readable to use the => operator between key/value
 pairs. The => operator is mostly
just a more visually distinctive
 synonym for a comma, but it also arranges for its left-hand operand to
be
 interpreted as a string -- if it's a bareword that would be a legal simple
 identifier (=> doesn't quote
compound identifiers, that contain
 double colons). This makes it nice for initializing hashes:

 %map = (
 red => 0x00f,
 blue => 0x0f0,
 green => 0xf00,
);

or for initializing hash references to be used as records:

 $rec = {
 witch => 'Mable the Merciless',
 cat => 'Fluffy the Ferocious',
 date => '10/31/1776',
 };

or for using call-by-named-parameter to complicated functions:

 $field = $query->radio_group(
 name => 'group_name',
 values => ['eenie','meenie','minie'],
 default => 'meenie',
 linebreak => 'true',
 labels => \%labels
);

Note that just because a hash is initialized in that order doesn't
 mean that it comes out in that order.
See "sort" in perlfunc for examples
 of how to arrange for an output ordering.

Subscripts
An array is subscripted by specifying a dollar sign ($), then the
 name of the array (without the leading
@), then the subscript inside
 square brackets. For example:

 @myarray = (5, 50, 500, 5000);
 print "Element Number 2 is", $myarray[2], "\n";

The array indices start with 0. A negative subscript retrieves its value from the end. In our example,
$myarray[-1] would have been 5000, and $myarray[-2] would have been 500.

Perl version 5.8.8 documentation - perldata

Page 10http://perldoc.perl.org

Hash subscripts are similar, only instead of square brackets curly brackets
 are used. For example:

 %scientists =
 (
 "Newton" => "Isaac",
 "Einstein" => "Albert",
 "Darwin" => "Charles",
 "Feynman" => "Richard",
);

 print "Darwin's First Name is ", $scientists{"Darwin"}, "\n";

Slices
A common way to access an array or a hash is one scalar element at a
 time. You can also subscript a
list to get a single element from it.

 $whoami = $ENV{"USER"}; # one element from the hash
 $parent = $ISA[0]; # one element from the array
 $dir = (getpwnam("daemon"))[7]; # likewise, but with list

A slice accesses several elements of a list, an array, or a hash
 simultaneously using a list of
subscripts. It's more convenient
 than writing out the individual elements as a list of separate
 scalar
values.

 ($him, $her) = @folks[0,-1]; # array slice
 @them = @folks[0 .. 3]; # array slice
 ($who, $home) = @ENV{"USER", "HOME"}; # hash slice
 ($uid, $dir) = (getpwnam("daemon"))[2,7]; # list slice

Since you can assign to a list of variables, you can also assign to
 an array or hash slice.

 @days[3..5] = qw/Wed Thu Fri/;
 @colors{'red','blue','green'}
 = (0xff0000, 0x0000ff, 0x00ff00);
 @folks[0, -1] = @folks[-1, 0];

The previous assignments are exactly equivalent to

 ($days[3], $days[4], $days[5]) = qw/Wed Thu Fri/;
 ($colors{'red'}, $colors{'blue'}, $colors{'green'})
 = (0xff0000, 0x0000ff, 0x00ff00);
 ($folks[0], $folks[-1]) = ($folks[-1], $folks[0]);

Since changing a slice changes the original array or hash that it's
 slicing, a foreach construct will
alter some--or even all--of the
 values of the array or hash.

 foreach (@array[4 .. 10]) { s/peter/paul/ }

 foreach (@hash{qw[key1 key2]}) {
 s/^\s+//; # trim leading whitespace
 s/\s+$//; # trim trailing whitespace
 s/(\w+)/\u\L$1/g; # "titlecase" words
 }

A slice of an empty list is still an empty list. Thus:

Perl version 5.8.8 documentation - perldata

Page 11http://perldoc.perl.org

 @a = ()[1,0]; # @a has no elements
 @b = (@a)[0,1]; # @b has no elements
 @c = (0,1)[2,3]; # @c has no elements

But:

 @a = (1)[1,0]; # @a has two elements
 @b = (1,undef)[1,0,2]; # @b has three elements

This makes it easy to write loops that terminate when a null list
 is returned:

 while (($home, $user) = (getpwent)[7,0]) {
 printf "%-8s %s\n", $user, $home;
 }

As noted earlier in this document, the scalar sense of list assignment
 is the number of elements on
the right-hand side of the assignment.
 The null list contains no elements, so when the password file is
exhausted, the result is 0, not 2.

If you're confused about why you use an '@' there on a hash slice
 instead of a '%', think of it like this.
The type of bracket (square
 or curly) governs whether it's an array or a hash being looked at.
 On the
other hand, the leading symbol ('$' or '@') on the array or
 hash indicates whether you are getting back
a singular value (a
 scalar) or a plural one (a list).

Typeglobs and Filehandles
Perl uses an internal type called a typeglob to hold an entire
 symbol table entry. The type prefix of a
typeglob is a *, because
 it represents all types. This used to be the preferred way to
 pass arrays and
hashes by reference into a function, but now that
 we have real references, this is seldom needed.

The main use of typeglobs in modern Perl is create symbol table aliases.
 This assignment:

 *this = *that;

makes $this an alias for $that, @this an alias for @that, %this an alias
 for %that, &this an alias for
&that, etc. Much safer is to use a reference.
 This:

 local *Here::blue = \$There::green;

temporarily makes $Here::blue an alias for $There::green, but doesn't
 make @Here::blue an alias for
@There::green, or %Here::blue an alias for
 %There::green, etc. See "Symbol Tables" in perlmod for
more examples
 of this. Strange though this may seem, this is the basis for the whole
 module
import/export system.

Another use for typeglobs is to pass filehandles into a function or
 to create new filehandles. If you
need to use a typeglob to save away
 a filehandle, do it this way:

 $fh = *STDOUT;

or perhaps as a real reference, like this:

 $fh = *STDOUT;

See perlsub for examples of using these as indirect filehandles
 in functions.

Typeglobs are also a way to create a local filehandle using the local()
 operator. These last until their
block is exited, but may be passed back.
 For example:

Perl version 5.8.8 documentation - perldata

Page 12http://perldoc.perl.org

 sub newopen {
 my $path = shift;
 local *FH; # not my!
 open (FH, $path) or return undef;
 return *FH;
 }
 $fh = newopen('/etc/passwd');

Now that we have the *foo{THING} notation, typeglobs aren't used as much
 for filehandle
manipulations, although they're still needed to pass brand
 new file and directory handles into or out of
functions. That's because *HANDLE{IO} only works if HANDLE has already been used as a handle.

In other words, *FH must be used to create new symbol table entries; *foo{THING} cannot. When in
doubt, use *FH.

All functions that are capable of creating filehandles (open(),
 opendir(), pipe(), socketpair(), sysopen(),
socket(), and accept())
 automatically create an anonymous filehandle if the handle passed to
 them is
an uninitialized scalar variable. This allows the constructs
 such as open(my $fh, ...) and
open(local $fh,...) to be used to
 create filehandles that will conveniently be closed
automatically when
 the scope ends, provided there are no other references to them. This
 largely
eliminates the need for typeglobs when opening filehandles
 that must be passed around, as in the
following example:

 sub myopen {
 open my $fh, "@_"
 or die "Can't open '@_': $!";
 return $fh;
 }

 {
 my $f = myopen("</etc/motd");
 print <$f>;
 # $f implicitly closed here
 }

Note that if an initialized scalar variable is used instead the
 result is different: my $fh='zzz';
open($fh, ...) is equivalent
 to open(*{'zzz'}, ...). use strict 'refs' forbids such
practice.

Another way to create anonymous filehandles is with the Symbol
 module or with the IO::Handle
module and its ilk. These modules
 have the advantage of not hiding different types of the same name

during the local(). See the bottom of "open()" in perlfunc for an
 example.

SEE ALSO
See perlvar for a description of Perl's built-in variables and
 a discussion of legal variable names. See
perlref, perlsub,
 and "Symbol Tables" in perlmod for more discussion on typeglobs and
 the
*foo{THING} syntax.

