
Perl version 5.8.8 documentation - perlguts

Page 1http://perldoc.perl.org

NAME
perlguts - Introduction to the Perl API

DESCRIPTION
This document attempts to describe how to use the Perl API, as well as
 to provide some info on the
basic workings of the Perl core. It is far
 from complete and probably contains many errors. Please
refer any
 questions or comments to the author below.

Variables
Datatypes

Perl has three typedefs that handle Perl's three main data types:

 SV Scalar Value
 AV Array Value
 HV Hash Value

Each typedef has specific routines that manipulate the various data types.

What is an "IV"?
Perl uses a special typedef IV which is a simple signed integer type that is
 guaranteed to be large
enough to hold a pointer (as well as an integer).
 Additionally, there is the UV, which is simply an
unsigned IV.

Perl also uses two special typedefs, I32 and I16, which will always be at
 least 32-bits and 16-bits long,
respectively. (Again, there are U32 and U16,
 as well.) They will usually be exactly 32 and 16 bits long,
but on Crays
 they will both be 64 bits.

Working with SVs
An SV can be created and loaded with one command. There are five types of
 values that can be
loaded: an integer value (IV), an unsigned integer
 value (UV), a double (NV), a string (PV), and
another scalar (SV).

The seven routines are:

 SV* newSViv(IV);
 SV* newSVuv(UV);
 SV* newSVnv(double);
 SV* newSVpv(const char*, STRLEN);
 SV* newSVpvn(const char*, STRLEN);
 SV* newSVpvf(const char*, ...);
 SV* newSVsv(SV*);

STRLEN is an integer type (Size_t, usually defined as size_t in config.h) guaranteed to be large
enough to represent the size of
 any string that perl can handle.

In the unlikely case of a SV requiring more complex initialisation, you
 can create an empty SV with
newSV(len). If len is 0 an empty SV of
 type NULL is returned, else an SV of type PV is returned with
len + 1 (for
 the NUL) bytes of storage allocated, accessible via SvPVX. In both cases
 the SV has
value undef.

 SV *sv = newSV(0); /* no storage allocated */
 SV *sv = newSV(10); /* 10 (+1) bytes of uninitialised storage
allocated */

To change the value of an already-existing SV, there are eight routines:

 void sv_setiv(SV*, IV);

Perl version 5.8.8 documentation - perlguts

Page 2http://perldoc.perl.org

 void sv_setuv(SV*, UV);
 void sv_setnv(SV*, double);
 void sv_setpv(SV*, const char*);
 void sv_setpvn(SV*, const char*, STRLEN)
 void sv_setpvf(SV*, const char*, ...);
 void sv_vsetpvfn(SV*, const char*, STRLEN, va_list *, SV **, I32, bool
 *);
 void sv_setsv(SV*, SV*);

Notice that you can choose to specify the length of the string to be
 assigned by using sv_setpvn,
newSVpvn, or newSVpv, or you may
 allow Perl to calculate the length by using sv_setpv or by
specifying
 0 as the second argument to newSVpv. Be warned, though, that Perl will
 determine the
string's length by using strlen, which depends on the
 string terminating with a NUL character.

The arguments of sv_setpvf are processed like sprintf, and the
 formatted output becomes the
value.

sv_vsetpvfn is an analogue of vsprintf, but it allows you to specify
 either a pointer to a variable
argument list or the address and length of
 an array of SVs. The last argument points to a boolean; on
return, if that
 boolean is true, then locale-specific information has been used to format
 the string, and
the string's contents are therefore untrustworthy (see perlsec). This pointer may be NULL if that
information is not
 important. Note that this function requires you to specify the length of
 the format.

The sv_set*() functions are not generic enough to operate on values
 that have "magic". See Magic
Virtual Tables later in this document.

All SVs that contain strings should be terminated with a NUL character.
 If it is not NUL-terminated
there is a risk of
 core dumps and corruptions from code which passes the string to C
 functions or
system calls which expect a NUL-terminated string.
 Perl's own functions typically add a trailing NUL
for this reason.
 Nevertheless, you should be very careful when you pass a string stored
 in an SV to a
C function or system call.

To access the actual value that an SV points to, you can use the macros:

 SvIV(SV*)
 SvUV(SV*)
 SvNV(SV*)
 SvPV(SV*, STRLEN len)
 SvPV_nolen(SV*)

which will automatically coerce the actual scalar type into an IV, UV, double,
 or string.

In the SvPV macro, the length of the string returned is placed into the
 variable len (this is a macro, so
you do not use &len). If you do
 not care what the length of the data is, use the SvPV_nolen macro.

Historically the SvPV macro with the global variable PL_na has been
 used in this case. But that can
be quite inefficient because PL_na must
 be accessed in thread-local storage in threaded Perl. In any
case, remember
 that Perl allows arbitrary strings of data that may both contain NULs and
 might not
be terminated by a NUL.

Also remember that C doesn't allow you to safely say foo(SvPV(s, len),
 len);. It might work
with your compiler, but it won't work for everyone.
 Break this sort of statement up into separate
assignments:

 SV *s;
 STRLEN len;
 char * ptr;
 ptr = SvPV(s, len);
 foo(ptr, len);

Perl version 5.8.8 documentation - perlguts

Page 3http://perldoc.perl.org

If you want to know if the scalar value is TRUE, you can use:

 SvTRUE(SV*)

Although Perl will automatically grow strings for you, if you need to force
 Perl to allocate more
memory for your SV, you can use the macro

 SvGROW(SV*, STRLEN newlen)

which will determine if more memory needs to be allocated. If so, it will
 call the function sv_grow.
Note that SvGROW can only increase, not
 decrease, the allocated memory of an SV and that it does
not automatically
 add a byte for the a trailing NUL (perl's own string functions typically do
SvGROW(sv, len + 1)).

If you have an SV and want to know what kind of data Perl thinks is stored
 in it, you can use the
following macros to check the type of SV you have.

 SvIOK(SV*)
 SvNOK(SV*)
 SvPOK(SV*)

You can get and set the current length of the string stored in an SV with
 the following macros:

 SvCUR(SV*)
 SvCUR_set(SV*, I32 val)

You can also get a pointer to the end of the string stored in the SV
 with the macro:

 SvEND(SV*)

But note that these last three macros are valid only if SvPOK() is true.

If you want to append something to the end of string stored in an SV*,
 you can use the following
functions:

 void sv_catpv(SV*, const char*);
 void sv_catpvn(SV*, const char*, STRLEN);
 void sv_catpvf(SV*, const char*, ...);
 void sv_vcatpvfn(SV*, const char*, STRLEN, va_list *, SV **, I32,
bool);
 void sv_catsv(SV*, SV*);

The first function calculates the length of the string to be appended by
 using strlen. In the second,
you specify the length of the string
 yourself. The third function processes its arguments like sprintf
and
 appends the formatted output. The fourth function works like vsprintf.
 You can specify the
address and length of an array of SVs instead of the
 va_list argument. The fifth function extends the
string stored in the first
 SV with the string stored in the second SV. It also forces the second SV
 to be
interpreted as a string.

The sv_cat*() functions are not generic enough to operate on values that
 have "magic". See Magic
Virtual Tables later in this document.

If you know the name of a scalar variable, you can get a pointer to its SV
 by using the following:

 SV* get_sv("package::varname", FALSE);

This returns NULL if the variable does not exist.

Perl version 5.8.8 documentation - perlguts

Page 4http://perldoc.perl.org

If you want to know if this variable (or any other SV) is actually defined,
 you can call:

 SvOK(SV*)

The scalar undef value is stored in an SV instance called PL_sv_undef.

Its address can be used whenever an SV* is needed. Make sure that
 you don't try to compare a
random sv with &PL_sv_undef. For example
 when interfacing Perl code, it'll work correctly for:

 foo(undef);

But won't work when called as:

 $x = undef;
 foo($x);

So to repeat always use SvOK() to check whether an sv is defined.

Also you have to be careful when using &PL_sv_undef as a value in
 AVs or HVs (see AVs, HVs and
undefined values).

There are also the two values PL_sv_yes and PL_sv_no, which contain
 boolean TRUE and FALSE
values, respectively. Like PL_sv_undef, their
 addresses can be used whenever an SV* is needed.

Do not be fooled into thinking that (SV *) 0 is the same as &PL_sv_undef.
 Take this code:

 SV* sv = (SV*) 0;
 if (I-am-to-return-a-real-value) {
 sv = sv_2mortal(newSViv(42));
 }
 sv_setsv(ST(0), sv);

This code tries to return a new SV (which contains the value 42) if it should
 return a real value, or
undef otherwise. Instead it has returned a NULL
 pointer which, somewhere down the line, will cause a
segmentation violation,
 bus error, or just weird results. Change the zero to &PL_sv_undef in the
 first
line and all will be well.

To free an SV that you've created, call SvREFCNT_dec(SV*). Normally this
 call is not necessary
(see Reference Counts and Mortality).

Offsets
Perl provides the function sv_chop to efficiently remove characters
 from the beginning of a string;
you give it an SV and a pointer to
 somewhere inside the PV, and it discards everything before the

pointer. The efficiency comes by means of a little hack: instead of
 actually removing the characters,
sv_chop sets the flag OOK
 (offset OK) to signal to other functions that the offset hack is in
 effect, and
it puts the number of bytes chopped off into the IV field
 of the SV. It then moves the PV pointer (called
SvPVX) forward that
 many bytes, and adjusts SvCUR and SvLEN.

Hence, at this point, the start of the buffer that we allocated lives
 at SvPVX(sv) - SvIV(sv) in
memory and the PV pointer is pointing
 into the middle of this allocated storage.

This is best demonstrated by example:

 % ./perl -Ilib -MDevel::Peek -le '$a="12345"; $a=~s/.//; Dump($a)'
 SV = PVIV(0x8128450) at 0x81340f0
 REFCNT = 1
 FLAGS = (POK,OOK,pPOK)
 IV = 1 (OFFSET)
 PV = 0x8135781 ("1" .) "2345"\0

Perl version 5.8.8 documentation - perlguts

Page 5http://perldoc.perl.org

 CUR = 4
 LEN = 5

Here the number of bytes chopped off (1) is put into IV, and Devel::Peek::Dump helpfully reminds
us that this is an offset. The
 portion of the string between the "real" and the "fake" beginnings is

shown in parentheses, and the values of SvCUR and SvLEN reflect
 the fake beginning, not the real
one.

Something similar to the offset hack is performed on AVs to enable
 efficient shifting and splicing off
the beginning of the array; while AvARRAY points to the first element in the array that is visible from

Perl, AvALLOC points to the real start of the C array. These are
 usually the same, but a shift
operation can be carried out by
 increasing AvARRAY by one and decreasing AvFILL and AvLEN.

Again, the location of the real start of the C array only comes into
 play when freeing the array. See
av_shift in av.c.

What's Really Stored in an SV?
Recall that the usual method of determining the type of scalar you have is
 to use Sv*OK macros.
Because a scalar can be both a number and a string,
 usually these macros will always return TRUE
and calling the Sv*V
 macros will do the appropriate conversion of string to integer/double or

integer/double to string.

If you really need to know if you have an integer, double, or string
 pointer in an SV, you can use the
following three macros instead:

 SvIOKp(SV*)
 SvNOKp(SV*)
 SvPOKp(SV*)

These will tell you if you truly have an integer, double, or string pointer
 stored in your SV. The "p"
stands for private.

The are various ways in which the private and public flags may differ.
 For example, a tied SV may
have a valid underlying value in the IV slot
 (so SvIOKp is true), but the data should be accessed via
the FETCH
 routine rather than directly, so SvIOK is false. Another is when
 numeric conversion has
occurred and precision has been lost: only the
 private flag is set on 'lossy' values. So when an NV is
converted to an
 IV with loss, SvIOKp, SvNOKp and SvNOK will be set, while SvIOK wont be.

In general, though, it's best to use the Sv*V macros.

Working with AVs
There are two ways to create and load an AV. The first method creates an
 empty AV:

 AV* newAV();

The second method both creates the AV and initially populates it with SVs:

 AV* av_make(I32 num, SV **ptr);

The second argument points to an array containing num SV*'s. Once the
 AV has been created, the
SVs can be destroyed, if so desired.

Once the AV has been created, the following operations are possible on AVs:

 void av_push(AV*, SV*);
 SV* av_pop(AV*);
 SV* av_shift(AV*);
 void av_unshift(AV*, I32 num);

Perl version 5.8.8 documentation - perlguts

Page 6http://perldoc.perl.org

These should be familiar operations, with the exception of av_unshift.
 This routine adds num
elements at the front of the array with the undef
 value. You must then use av_store (described
below) to assign values
 to these new elements.

Here are some other functions:

 I32 av_len(AV*);
 SV** av_fetch(AV*, I32 key, I32 lval);
 SV** av_store(AV*, I32 key, SV* val);

The av_len function returns the highest index value in array (just
 like $#array in Perl). If the array is
empty, -1 is returned. The av_fetch function returns the value at index key, but if lval
 is non-zero,
then av_fetch will store an undef value at that index.
 The av_store function stores the value val
at index key, and does
 not increment the reference count of val. Thus the caller is responsible
 for
taking care of that, and if av_store returns NULL, the caller will
 have to decrement the reference
count to avoid a memory leak. Note that av_fetch and av_store both return SV**'s, not SV*'s as
their
 return value.

 void av_clear(AV*);
 void av_undef(AV*);
 void av_extend(AV*, I32 key);

The av_clear function deletes all the elements in the AV* array, but
 does not actually delete the
array itself. The av_undef function will
 delete all the elements in the array plus the array itself. The
av_extend function extends the array so that it contains at least key+1
 elements. If key+1 is less
than the currently allocated length of the array,
 then nothing is done.

If you know the name of an array variable, you can get a pointer to its AV
 by using the following:

 AV* get_av("package::varname", FALSE);

This returns NULL if the variable does not exist.

See Understanding the Magic of Tied Hashes and Arrays for more
 information on how to use the
array access functions on tied arrays.

Working with HVs
To create an HV, you use the following routine:

 HV* newHV();

Once the HV has been created, the following operations are possible on HVs:

 SV** hv_store(HV*, const char* key, U32 klen, SV* val, U32 hash);
 SV** hv_fetch(HV*, const char* key, U32 klen, I32 lval);

The klen parameter is the length of the key being passed in (Note that
 you cannot pass 0 in as a
value of klen to tell Perl to measure the
 length of the key). The val argument contains the SV
pointer to the
 scalar being stored, and hash is the precomputed hash value (zero if
 you want
hv_store to calculate it for you). The lval parameter
 indicates whether this fetch is actually a part
of a store operation, in
 which case a new undefined value will be added to the HV with the supplied

key and hv_fetch will return as if the value had already existed.

Remember that hv_store and hv_fetch return SV**'s and not just SV*. To access the scalar
value, you must first dereference the return
 value. However, you should check to make sure that the
return value is
 not NULL before dereferencing it.

These two functions check if a hash table entry exists, and deletes it.

Perl version 5.8.8 documentation - perlguts

Page 7http://perldoc.perl.org

 bool hv_exists(HV*, const char* key, U32 klen);
 SV* hv_delete(HV*, const char* key, U32 klen, I32 flags);

If flags does not include the G_DISCARD flag then hv_delete will
 create and return a mortal copy
of the deleted value.

And more miscellaneous functions:

 void hv_clear(HV*);
 void hv_undef(HV*);

Like their AV counterparts, hv_clear deletes all the entries in the hash
 table but does not actually
delete the hash table. The hv_undef deletes
 both the entries and the hash table itself.

Perl keeps the actual data in linked list of structures with a typedef of HE.
 These contain the actual
key and value pointers (plus extra administrative
 overhead). The key is a string pointer; the value is
an SV*. However,
 once you have an HE*, to get the actual key and value, use the routines
 specified
below.

 I32 hv_iterinit(HV*);
 /* Prepares starting point to traverse hash table */
 HE* hv_iternext(HV*);
 /* Get the next entry, and return a pointer to a
 structure that has both the key and value */
 char* hv_iterkey(HE* entry, I32* retlen);
 /* Get the key from an HE structure and also return
 the length of the key string */
 SV* hv_iterval(HV*, HE* entry);
 /* Return an SV pointer to the value of the HE
 structure */
 SV* hv_iternextsv(HV*, char** key, I32* retlen);
 /* This convenience routine combines hv_iternext,
	 hv_iterkey, and hv_iterval. The key and retlen
	 arguments are return values for the key and its
	 length. The value is returned in the SV* argument */

If you know the name of a hash variable, you can get a pointer to its HV
 by using the following:

 HV* get_hv("package::varname", FALSE);

This returns NULL if the variable does not exist.

The hash algorithm is defined in the PERL_HASH(hash, key, klen) macro:

 hash = 0;
 while (klen--)
	 hash = (hash * 33) + *key++;
 hash = hash + (hash >> 5);			 /* after 5.6 */

The last step was added in version 5.6 to improve distribution of
 lower bits in the resulting hash value.

See Understanding the Magic of Tied Hashes and Arrays for more
 information on how to use the
hash access functions on tied hashes.

Hash API Extensions
Beginning with version 5.004, the following functions are also supported:

Perl version 5.8.8 documentation - perlguts

Page 8http://perldoc.perl.org

 HE* hv_fetch_ent (HV* tb, SV* key, I32 lval, U32 hash);
 HE* hv_store_ent (HV* tb, SV* key, SV* val, U32 hash);

 bool hv_exists_ent (HV* tb, SV* key, U32 hash);
 SV* hv_delete_ent (HV* tb, SV* key, I32 flags, U32 hash);

 SV* hv_iterkeysv (HE* entry);

Note that these functions take SV* keys, which simplifies writing
 of extension code that deals with
hash structures. These functions
 also allow passing of SV* keys to tie functions without forcing
 you
to stringify the keys (unlike the previous set of functions).

They also return and accept whole hash entries (HE*), making their
 use more efficient (since the hash
number for a particular string
 doesn't have to be recomputed every time). See perlapi for detailed

descriptions.

The following macros must always be used to access the contents of hash
 entries. Note that the
arguments to these macros must be simple
 variables, since they may get evaluated more than once.
See perlapi for detailed descriptions of these macros.

 HePV(HE* he, STRLEN len)
 HeVAL(HE* he)
 HeHASH(HE* he)
 HeSVKEY(HE* he)
 HeSVKEY_force(HE* he)
 HeSVKEY_set(HE* he, SV* sv)

These two lower level macros are defined, but must only be used when
 dealing with keys that are not
SV*s:

 HeKEY(HE* he)
 HeKLEN(HE* he)

Note that both hv_store and hv_store_ent do not increment the
 reference count of the stored
val, which is the caller's responsibility.
 If these functions return a NULL value, the caller will usually
have to
 decrement the reference count of val to avoid a memory leak.

AVs, HVs and undefined values
Sometimes you have to store undefined values in AVs or HVs. Although
 this may be a rare case, it
can be tricky. That's because you're
 used to using &PL_sv_undef if you need an undefined SV.

For example, intuition tells you that this XS code:

 AV *av = newAV();
 av_store(av, 0, &PL_sv_undef);

is equivalent to this Perl code:

 my @av;
 $av[0] = undef;

Unfortunately, this isn't true. AVs use &PL_sv_undef as a marker
 for indicating that an array element
has not yet been initialized.
 Thus, exists $av[0] would be true for the above Perl code, but
 false
for the array generated by the XS code.

Other problems can occur when storing &PL_sv_undef in HVs:

Perl version 5.8.8 documentation - perlguts

Page 9http://perldoc.perl.org

 hv_store(hv, "key", 3, &PL_sv_undef, 0);

This will indeed make the value undef, but if you try to modify
 the value of key, you'll get the
following error:

 Modification of non-creatable hash value attempted

In perl 5.8.0, &PL_sv_undef was also used to mark placeholders
 in restricted hashes. This caused
such hash entries not to appear
 when iterating over the hash or when checking for the keys
 with the
hv_exists function.

You can run into similar problems when you store &PL_sv_true or &PL_sv_false into AVs or HVs.
Trying to modify such elements
 will give you the following error:

 Modification of a read-only value attempted

To make a long story short, you can use the special variables &PL_sv_undef, &PL_sv_true and
&PL_sv_false with AVs and
 HVs, but you have to make sure you know what you're doing.

Generally, if you want to store an undefined value in an AV
 or HV, you should not use
&PL_sv_undef, but rather create a
 new undefined value using the newSV function, for example:

 av_store(av, 42, newSV(0));
 hv_store(hv, "foo", 3, newSV(0), 0);

References
References are a special type of scalar that point to other data types
 (including references).

To create a reference, use either of the following functions:

 SV* newRV_inc((SV*) thing);
 SV* newRV_noinc((SV*) thing);

The thing argument can be any of an SV*, AV*, or HV*. The
 functions are identical except that
newRV_inc increments the reference
 count of the thing, while newRV_noinc does not. For
historical
 reasons, newRV is a synonym for newRV_inc.

Once you have a reference, you can use the following macro to dereference
 the reference:

 SvRV(SV*)

then call the appropriate routines, casting the returned SV* to either an AV* or HV*, if required.

To determine if an SV is a reference, you can use the following macro:

 SvROK(SV*)

To discover what type of value the reference refers to, use the following
 macro and then check the
return value.

 SvTYPE(SvRV(SV*))

The most useful types that will be returned are:

 SVt_IV Scalar
 SVt_NV Scalar
 SVt_PV Scalar

Perl version 5.8.8 documentation - perlguts

Page 10http://perldoc.perl.org

 SVt_RV Scalar
 SVt_PVAV Array
 SVt_PVHV Hash
 SVt_PVCV Code
 SVt_PVGV Glob (possible a file handle)
 SVt_PVMG Blessed or Magical Scalar

 See the sv.h header file for more details.

Blessed References and Class Objects
References are also used to support object-oriented programming. In perl's
 OO lexicon, an object is
simply a reference that has been blessed into a
 package (or class). Once blessed, the programmer
may now use the reference
 to access the various methods in the class.

A reference can be blessed into a package with the following function:

 SV* sv_bless(SV* sv, HV* stash);

The sv argument must be a reference value. The stash argument
 specifies which class the
reference will belong to. See Stashes and Globs for information on converting class names into
stashes.

/* Still under construction */

Upgrades rv to reference if not already one. Creates new SV for rv to
 point to. If classname is
non-null, the SV is blessed into the specified
 class. SV is returned.

	 SV* newSVrv(SV* rv, const char* classname);

Copies integer, unsigned integer or double into an SV whose reference is rv. SV is blessed
 if
classname is non-null.

	 SV* sv_setref_iv(SV* rv, const char* classname, IV iv);
	 SV* sv_setref_uv(SV* rv, const char* classname, UV uv);
	 SV* sv_setref_nv(SV* rv, const char* classname, NV iv);

Copies the pointer value (the address, not the string!) into an SV whose
 reference is rv. SV is blessed
if classname is non-null.

	 SV* sv_setref_pv(SV* rv, const char* classname, PV iv);

Copies string into an SV whose reference is rv. Set length to 0 to let
 Perl calculate the string length.
SV is blessed if classname is non-null.

	 SV* sv_setref_pvn(SV* rv, const char* classname, PV iv, STRLEN length);

Tests whether the SV is blessed into the specified class. It does not
 check inheritance relationships.

	 int sv_isa(SV* sv, const char* name);

Tests whether the SV is a reference to a blessed object.

	 int sv_isobject(SV* sv);

Tests whether the SV is derived from the specified class. SV can be either
 a reference to a blessed
object or a string containing a class name. This
 is the function implementing the UNIVERSAL::isa

Perl version 5.8.8 documentation - perlguts

Page 11http://perldoc.perl.org

functionality. 	 bool sv_derived_from(SV* sv, const char* name);

To check if you've got an object derived from a specific class you have
 to write:

	 if (sv_isobject(sv) && sv_derived_from(sv, class)) { ... }

Creating New Variables
To create a new Perl variable with an undef value which can be accessed from
 your Perl script, use
the following routines, depending on the variable type.

 SV* get_sv("package::varname", TRUE);
 AV* get_av("package::varname", TRUE);
 HV* get_hv("package::varname", TRUE);

Notice the use of TRUE as the second parameter. The new variable can now
 be set, using the
routines appropriate to the data type.

There are additional macros whose values may be bitwise OR'ed with the TRUE argument to enable
certain extra features. Those bits are:

GV_ADDMULTI

Marks the variable as multiply defined, thus preventing the:

 Name <varname> used only once: possible typo

warning.

GV_ADDWARN

Issues the warning:

 Had to create <varname> unexpectedly

if the variable did not exist before the function was called.

If you do not specify a package name, the variable is created in the current
 package.

Reference Counts and Mortality
Perl uses a reference count-driven garbage collection mechanism. SVs,
 AVs, or HVs (xV for short in
the following) start their life with a
 reference count of 1. If the reference count of an xV ever drops to
0,
 then it will be destroyed and its memory made available for reuse.

This normally doesn't happen at the Perl level unless a variable is
 undef'ed or the last variable holding
a reference to it is changed or
 overwritten. At the internal level, however, reference counts can be

manipulated with the following macros:

 int SvREFCNT(SV* sv);
 SV* SvREFCNT_inc(SV* sv);
 void SvREFCNT_dec(SV* sv);

However, there is one other function which manipulates the reference
 count of its argument. The
newRV_inc function, you will recall,
 creates a reference to the specified argument. As a side effect,
 it
increments the argument's reference count. If this is not what
 you want, use newRV_noinc instead.

For example, imagine you want to return a reference from an XSUB function.
 Inside the XSUB
routine, you create an SV which initially has a reference
 count of one. Then you call newRV_inc,
passing it the just-created SV.
 This returns the reference as a new SV, but the reference count of the

SV you passed to newRV_inc has been incremented to two. Now you
 return the reference from the
XSUB routine and forget about the SV.
 But Perl hasn't! Whenever the returned reference is

Perl version 5.8.8 documentation - perlguts

Page 12http://perldoc.perl.org

destroyed, the
 reference count of the original SV is decreased to one and nothing happens.
 The SV
will hang around without any way to access it until Perl itself
 terminates. This is a memory leak.

The correct procedure, then, is to use newRV_noinc instead of newRV_inc. Then, if and when the
last reference is destroyed,
 the reference count of the SV will go to zero and it will be destroyed,

stopping any memory leak.

There are some convenience functions available that can help with the
 destruction of xVs. These
functions introduce the concept of "mortality".
 An xV that is mortal has had its reference count marked
to be decremented,
 but not actually decremented, until "a short time later". Generally the
 term "short
time later" means a single Perl statement, such as a call to
 an XSUB function. The actual determinant
for when mortal xVs have their
 reference count decremented depends on two macros, SAVETMPS
and FREETMPS.
 See perlcall and perlxs for more details on these macros.

"Mortalization" then is at its simplest a deferred SvREFCNT_dec.
 However, if you mortalize a variable
twice, the reference count will
 later be decremented twice.

"Mortal" SVs are mainly used for SVs that are placed on perl's stack.
 For example an SV which is
created just to pass a number to a called sub
 is made mortal to have it cleaned up automatically when
it's popped off
 the stack. Similarly, results returned by XSUBs (which are pushed on the
 stack) are
often made mortal.

To create a mortal variable, use the functions:

 SV* sv_newmortal()
 SV* sv_2mortal(SV*)
 SV* sv_mortalcopy(SV*)

The first call creates a mortal SV (with no value), the second converts an existing
 SV to a mortal SV
(and thus defers a call to SvREFCNT_dec), and the
 third creates a mortal copy of an existing SV.

Because sv_newmortal gives the new SV no value,it must normally be given one
 via sv_setpv,
sv_setiv, etc. :

 SV *tmp = sv_newmortal();
 sv_setiv(tmp, an_integer);

As that is multiple C statements it is quite common so see this idiom instead:

 SV *tmp = sv_2mortal(newSViv(an_integer));

You should be careful about creating mortal variables. Strange things
 can happen if you make the
same value mortal within multiple contexts,
 or if you make a variable mortal multiple times. Thinking of
"Mortalization"
 as deferred SvREFCNT_dec should help to minimize such problems.
 For example if
you are passing an SV which you know has high enough REFCNT
 to survive its use on the stack you
need not do any mortalization.
 If you are not sure then doing an SvREFCNT_inc and sv_2mortal,
or
 making a sv_mortalcopy is safer.

The mortal routines are not just for SVs -- AVs and HVs can be
 made mortal by passing their address
(type-casted to SV*) to the sv_2mortal or sv_mortalcopy routines.

Stashes and Globs
A stash is a hash that contains all variables that are defined
 within a package. Each key of the stash
is a symbol
 name (shared by all the different types of objects that have the same
 name), and each
value in the hash table is a GV (Glob Value). This GV
 in turn contains references to the various
objects of that name,
 including (but not limited to) the following:

 Scalar Value
 Array Value

Perl version 5.8.8 documentation - perlguts

Page 13http://perldoc.perl.org

 Hash Value
 I/O Handle
 Format
 Subroutine

There is a single stash called PL_defstash that holds the items that exist
 in the main package. To
get at the items in other packages, append the
 string "::" to the package name. The items in the Foo
package are in
 the stash Foo:: in PL_defstash. The items in the Bar::Baz package are
 in the stash
Baz:: in Bar::'s stash.

To get the stash pointer for a particular package, use the function:

 HV* gv_stashpv(const char* name, I32 create)
 HV* gv_stashsv(SV*, I32 create)

The first function takes a literal string, the second uses the string stored
 in the SV. Remember that a
stash is just a hash table, so you get back an HV*. The create flag will create a new package if it is
set.

The name that gv_stash*v wants is the name of the package whose symbol table
 you want. The
default package is called main. If you have multiply nested
 packages, pass their names to
gv_stash*v, separated by :: as in the Perl
 language itself.

Alternately, if you have an SV that is a blessed reference, you can find
 out the stash pointer by using:

 HV* SvSTASH(SvRV(SV*));

then use the following to get the package name itself:

 char* HvNAME(HV* stash);

If you need to bless or re-bless an object you can use the following
 function:

 SV* sv_bless(SV*, HV* stash)

where the first argument, an SV*, must be a reference, and the second
 argument is a stash. The
returned SV* can now be used in the same way
 as any other SV.

For more information on references and blessings, consult perlref.

Double-Typed SVs
Scalar variables normally contain only one type of value, an integer,
 double, pointer, or reference.
Perl will automatically convert the
 actual scalar data from the stored type into the requested type.

Some scalar variables contain more than one type of scalar data. For
 example, the variable $!
contains either the numeric value of errno
 or its string equivalent from either strerror or
sys_errlist[].

To force multiple data values into an SV, you must do two things: use the sv_set*v routines to add
the additional scalar type, then set a flag
 so that Perl will believe it contains more than one type of
data. The
 four macros to set the flags are:

	 SvIOK_on
	 SvNOK_on
	 SvPOK_on
	 SvROK_on

The particular macro you must use depends on which sv_set*v routine
 you called first. This is

Perl version 5.8.8 documentation - perlguts

Page 14http://perldoc.perl.org

because every sv_set*v routine turns on
 only the bit for the particular type of data being set, and
turns off
 all the rest.

For example, to create a new Perl variable called "dberror" that contains
 both the numeric and
descriptive string error values, you could use the
 following code:

 extern int dberror;
 extern char *dberror_list;

 SV* sv = get_sv("dberror", TRUE);
 sv_setiv(sv, (IV) dberror);
 sv_setpv(sv, dberror_list[dberror]);
 SvIOK_on(sv);

If the order of sv_setiv and sv_setpv had been reversed, then the
 macro SvPOK_on would need
to be called instead of SvIOK_on.

Magic Variables
[This section still under construction. Ignore everything here. Post no
 bills. Everything not permitted is
forbidden.]

Any SV may be magical, that is, it has special features that a normal
 SV does not have. These
features are stored in the SV structure in a
 linked list of struct magic's, typedef'ed to MAGIC.

 struct magic {
 MAGIC* mg_moremagic;
 MGVTBL* mg_virtual;
 U16 mg_private;
 char mg_type;
 U8 mg_flags;
 SV* mg_obj;
 char* mg_ptr;
 I32 mg_len;
 };

Note this is current as of patchlevel 0, and could change at any time.

Assigning Magic
Perl adds magic to an SV using the sv_magic function:

 void sv_magic(SV* sv, SV* obj, int how, const char* name, I32 namlen);

The sv argument is a pointer to the SV that is to acquire a new magical
 feature.

If sv is not already magical, Perl uses the SvUPGRADE macro to
 convert sv to type SVt_PVMG. Perl
then continues by adding new magic
 to the beginning of the linked list of magical features. Any prior
entry
 of the same type of magic is deleted. Note that this can be overridden,
 and multiple instances of
the same type of magic can be associated with an
 SV.

The name and namlen arguments are used to associate a string with
 the magic, typically the name of
a variable. namlen is stored in the mg_len field and if name is non-null then either a savepvn copy
of name or name itself is stored in the mg_ptr field, depending on
 whether namlen is greater than
zero or equal to zero respectively. As a
 special case, if (name && namlen == HEf_SVKEY) then
name is assumed
 to contain an SV* and is stored as-is with its REFCNT incremented.

The sv_magic function uses how to determine which, if any, predefined
 "Magic Virtual Table" should
be assigned to the mg_virtual field.
 See the Magic Virtual Tables section below. The how argument

Perl version 5.8.8 documentation - perlguts

Page 15http://perldoc.perl.org

is also
 stored in the mg_type field. The value of how should be chosen
 from the set of macros
PERL_MAGIC_foo found in perl.h. Note that before
 these macros were added, Perl internals used to
directly use character
 literals, so you may occasionally come across old code or documentation

referring to 'U' magic rather than PERL_MAGIC_uvar for example.

The obj argument is stored in the mg_obj field of the MAGIC
 structure. If it is not the same as the sv
argument, the reference
 count of the obj object is incremented. If it is the same, or if
 the how
argument is PERL_MAGIC_arylen, or if it is a NULL pointer,
 then obj is merely stored, without the
reference count being incremented.

See also sv_magicext in perlapi for a more flexible way to add magic
 to an SV.

There is also a function to add magic to an HV:

 void hv_magic(HV *hv, GV *gv, int how);

This simply calls sv_magic and coerces the gv argument into an SV.

To remove the magic from an SV, call the function sv_unmagic:

 void sv_unmagic(SV *sv, int type);

The type argument should be equal to the how value when the SV
 was initially made magical.

Magic Virtual Tables
The mg_virtual field in the MAGIC structure is a pointer to an MGVTBL, which is a structure of
function pointers and stands for
 "Magic Virtual Table" to handle the various operations that might be

applied to that variable.

The MGVTBL has five pointers to the following routine types:

 int (*svt_get)(SV* sv, MAGIC* mg);
 int (*svt_set)(SV* sv, MAGIC* mg);
 U32 (*svt_len)(SV* sv, MAGIC* mg);
 int (*svt_clear)(SV* sv, MAGIC* mg);
 int (*svt_free)(SV* sv, MAGIC* mg);

This MGVTBL structure is set at compile-time in perl.h and there are
 currently 19 types (or 21 with
overloading turned on). These different
 structures contain pointers to various routines that perform
additional
 actions depending on which function is being called.

 Function pointer Action taken
 ---------------- ------------
 svt_get Do something before the value of the SV is
retrieved.
 svt_set Do something after the SV is assigned a value.
 svt_len Report on the SV's length.
 svt_clear		 Clear something the SV represents.
 svt_free Free any extra storage associated with the SV.

For instance, the MGVTBL structure called vtbl_sv (which corresponds
 to an mg_type of
PERL_MAGIC_sv) contains:

 { magic_get, magic_set, magic_len, 0, 0 }

Thus, when an SV is determined to be magical and of type PERL_MAGIC_sv,
 if a get operation is
being performed, the routine magic_get is
 called. All the various routines for the various magical
types begin
 with magic_. NOTE: the magic routines are not considered part of
 the Perl API, and may

Perl version 5.8.8 documentation - perlguts

Page 16http://perldoc.perl.org

not be exported by the Perl library.

The current kinds of Magic Virtual Tables are:

 mg_type
 (old-style char and macro) MGVTBL Type of magic
 -------------------------- ------

 \0 PERL_MAGIC_sv vtbl_sv Special scalar variable
 A PERL_MAGIC_overload vtbl_amagic %OVERLOAD hash
 a PERL_MAGIC_overload_elem vtbl_amagicelem %OVERLOAD hash element
 c PERL_MAGIC_overload_table (none) Holds overload table (AMT)
						 on stash
 B PERL_MAGIC_bm vtbl_bm Boyer-Moore (fast string
search)
 D PERL_MAGIC_regdata vtbl_regdata Regex match position data
						 (@+ and @- vars)
 d PERL_MAGIC_regdatum vtbl_regdatum Regex match position data
						 element
 E PERL_MAGIC_env vtbl_env %ENV hash
 e PERL_MAGIC_envelem vtbl_envelem %ENV hash element
 f PERL_MAGIC_fm vtbl_fm Formline ('compiled'
format)
 g PERL_MAGIC_regex_global vtbl_mglob m//g target / study()ed
string
 I PERL_MAGIC_isa vtbl_isa @ISA array
 i PERL_MAGIC_isaelem vtbl_isaelem @ISA array element
 k PERL_MAGIC_nkeys vtbl_nkeys scalar(keys()) lvalue
 L PERL_MAGIC_dbfile (none) Debugger %_<filename
 l PERL_MAGIC_dbline vtbl_dbline Debugger %_<filename
element
 m PERL_MAGIC_mutex vtbl_mutex ???
 o PERL_MAGIC_collxfrm vtbl_collxfrm Locale collate
transformation
 P PERL_MAGIC_tied vtbl_pack Tied array or hash
 p PERL_MAGIC_tiedelem vtbl_packelem Tied array or hash element
 q PERL_MAGIC_tiedscalar vtbl_packelem Tied scalar or handle
 r PERL_MAGIC_qr vtbl_qr precompiled qr// regex
 S PERL_MAGIC_sig vtbl_sig %SIG hash
 s PERL_MAGIC_sigelem vtbl_sigelem %SIG hash element
 t PERL_MAGIC_taint vtbl_taint Taintedness
 U PERL_MAGIC_uvar vtbl_uvar Available for use by
extensions
 v PERL_MAGIC_vec vtbl_vec vec() lvalue
 V PERL_MAGIC_vstring (none) v-string scalars
 w PERL_MAGIC_utf8 vtbl_utf8 UTF-8 length+offset cache
 x PERL_MAGIC_substr vtbl_substr substr() lvalue
 y PERL_MAGIC_defelem vtbl_defelem Shadow "foreach" iterator
						 variable / smart parameter
						 vivification
 * PERL_MAGIC_glob vtbl_glob GV (typeglob)
 # PERL_MAGIC_arylen vtbl_arylen Array length ($#ary)
 . PERL_MAGIC_pos vtbl_pos pos() lvalue
 < PERL_MAGIC_backref vtbl_backref ???
 ~ PERL_MAGIC_ext (none) Available for use by
extensions

Perl version 5.8.8 documentation - perlguts

Page 17http://perldoc.perl.org

When an uppercase and lowercase letter both exist in the table, then the
 uppercase letter is typically
used to represent some kind of composite type
 (a list or a hash), and the lowercase letter is used to
represent an element
 of that composite type. Some internals code makes use of this case

relationship. However, 'v' and 'V' (vec and v-string) are in no way related.

The PERL_MAGIC_ext and PERL_MAGIC_uvar magic types are defined
 specifically for use by
extensions and will not be used by perl itself.
 Extensions can use PERL_MAGIC_ext magic to 'attach'
private information
 to variables (typically objects). This is especially useful because
 there is no way
for normal perl code to corrupt this private information
 (unlike using extra elements of a hash object).

Similarly, PERL_MAGIC_uvar magic can be used much like tie() to call a
 C function any time a
scalar's value is used or changed. The MAGIC's mg_ptr field points to a ufuncs structure:

 struct ufuncs {
 I32 (*uf_val)(pTHX_ IV, SV*);
 I32 (*uf_set)(pTHX_ IV, SV*);
 IV uf_index;
 };

When the SV is read from or written to, the uf_val or uf_set
 function will be called with uf_index
as the first arg and a pointer to
 the SV as the second. A simple example of how to add
PERL_MAGIC_uvar
 magic is shown below. Note that the ufuncs structure is copied by
 sv_magic, so
you can safely allocate it on the stack.

 void
 Umagic(sv)
 SV *sv;
 PREINIT:
 struct ufuncs uf;
 CODE:
 uf.uf_val = &my_get_fn;
 uf.uf_set = &my_set_fn;
 uf.uf_index = 0;
 sv_magic(sv, 0, PERL_MAGIC_uvar, (char*)&uf, sizeof(uf));

Note that because multiple extensions may be using PERL_MAGIC_ext
 or PERL_MAGIC_uvar
magic, it is important for extensions to take
 extra care to avoid conflict. Typically only using the magic
on
 objects blessed into the same class as the extension is sufficient.
 For PERL_MAGIC_ext magic, it
may also be appropriate to add an I32
 'signature' at the top of the private data area and check that.

Also note that the sv_set*() and sv_cat*() functions described
 earlier do not invoke 'set' magic
on their targets. This must
 be done by the user either by calling the SvSETMAGIC() macro after

calling these functions, or by using one of the sv_set*_mg() or sv_cat*_mg() functions. Similarly,
generic C code must call the SvGETMAGIC() macro to invoke any 'get' magic if they use an SV

obtained from external sources in functions that don't handle magic.
 See perlapi for a description of
these functions.
 For example, calls to the sv_cat*() functions typically need to be
 followed by
SvSETMAGIC(), but they don't need a prior SvGETMAGIC()
 since their implementation handles 'get'
magic.

Finding Magic
 MAGIC* mg_find(SV*, int type); /* Finds the magic pointer of that type
*/

This routine returns a pointer to the MAGIC structure stored in the SV.
 If the SV does not have that
magical feature, NULL is returned. Also,
 if the SV is not of type SVt_PVMG, Perl may core dump.

 int mg_copy(SV* sv, SV* nsv, const char* key, STRLEN klen);

Perl version 5.8.8 documentation - perlguts

Page 18http://perldoc.perl.org

This routine checks to see what types of magic sv has. If the mg_type
 field is an uppercase letter,
then the mg_obj is copied to nsv, but
 the mg_type field is changed to be the lowercase letter.

Understanding the Magic of Tied Hashes and Arrays
Tied hashes and arrays are magical beasts of the PERL_MAGIC_tied
 magic type.

WARNING: As of the 5.004 release, proper usage of the array and hash
 access functions requires
understanding a few caveats. Some
 of these caveats are actually considered bugs in the API, to be
fixed
 in later releases, and are bracketed with [MAYCHANGE] below. If
 you find yourself actually
applying such information in this section, be
 aware that the behavior may change in the future, umm,
without warning.

The perl tie function associates a variable with an object that implements
 the various GET, SET, etc
methods. To perform the equivalent of the perl
 tie function from an XSUB, you must mimic this
behaviour. The code below
 carries out the necessary steps - firstly it creates a new hash, and then

creates a second hash which it blesses into the class which will implement
 the tie methods. Lastly it
ties the two hashes together, and returns a
 reference to the new tied hash. Note that the code below
does NOT call the
 TIEHASH method in the MyTie class -
 see Calling Perl Routines from within C
Programs for details on how
 to do this.

 SV*
 mytie()
 PREINIT:
 HV *hash;
 HV *stash;
 SV *tie;
 CODE:
 hash = newHV();
 tie = newRV_noinc((SV*)newHV());
 stash = gv_stashpv("MyTie", TRUE);
 sv_bless(tie, stash);
 hv_magic(hash, (GV*)tie, PERL_MAGIC_tied);
 RETVAL = newRV_noinc(hash);
 OUTPUT:
 RETVAL

The av_store function, when given a tied array argument, merely
 copies the magic of the array onto
the value to be "stored", using mg_copy. It may also return NULL, indicating that the value did not

actually need to be stored in the array. [MAYCHANGE] After a call to av_store on a tied array, the
caller will usually need to call mg_set(val) to actually invoke the perl level "STORE" method on the

TIEARRAY object. If av_store did return NULL, a call to SvREFCNT_dec(val) will also be usually
necessary to avoid a memory
 leak. [/MAYCHANGE]

The previous paragraph is applicable verbatim to tied hash access using the hv_store and
hv_store_ent functions as well.

av_fetch and the corresponding hash functions hv_fetch and hv_fetch_ent actually return an
undefined mortal value whose magic
 has been initialized using mg_copy. Note the value so returned
does not
 need to be deallocated, as it is already mortal. [MAYCHANGE] But you will
 need to call
mg_get() on the returned value in order to actually invoke
 the perl level "FETCH" method on the
underlying TIE object. Similarly,
 you may also call mg_set() on the return value after possibly
assigning
 a suitable value to it using sv_setsv, which will invoke the "STORE"
 method on the TIE
object. [/MAYCHANGE]

[MAYCHANGE]
 In other words, the array or hash fetch/store functions don't really
 fetch and store
actual values in the case of tied arrays and hashes. They
 merely call mg_copy to attach magic to the
values that were meant to be
 "stored" or "fetched". Later calls to mg_get and mg_set actually
 do the
job of invoking the TIE methods on the underlying objects. Thus
 the magic mechanism currently

Perl version 5.8.8 documentation - perlguts

Page 19http://perldoc.perl.org

implements a kind of lazy access to arrays
 and hashes.

Currently (as of perl version 5.004), use of the hash and array access
 functions requires the user to
be aware of whether they are operating on
 "normal" hashes and arrays, or on their tied variants. The
API may be
 changed to provide more transparent access to both tied and normal data
 types in future
versions.
 [/MAYCHANGE]

You would do well to understand that the TIEARRAY and TIEHASH interfaces
 are mere sugar to
invoke some perl method calls while using the uniform hash
 and array syntax. The use of this sugar
imposes some overhead (typically
 about two to four extra opcodes per FETCH/STORE operation, in
addition to
 the creation of all the mortal variables required to invoke the methods).
 This overhead will
be comparatively small if the TIE methods are themselves
 substantial, but if they are only a few
statements long, the overhead
 will not be insignificant.

Localizing changes
Perl has a very handy construction

 {
 local $var = 2;
 ...
 }

This construction is approximately equivalent to

 {
 my $oldvar = $var;
 $var = 2;
 ...
 $var = $oldvar;
 }

The biggest difference is that the first construction would
 reinstate the initial value of $var, irrespective
of how control exits
 the block: goto, return, die/eval, etc. It is a little bit
 more efficient as well.

There is a way to achieve a similar task from C via Perl API: create a pseudo-block, and arrange for
some changes to be automatically
 undone at the end of it, either explicit, or via a non-local exit (via

die()). A block-like construct is created by a pair of ENTER/LEAVE macros (see "Returning a Scalar" in
perlcall).
 Such a construct may be created specially for some important localized
 task, or an existing
one (like boundaries of enclosing Perl
 subroutine/block, or an existing pair for freeing TMPs) may be

used. (In the second case the overhead of additional localization must
 be almost negligible.) Note that
any XSUB is automatically enclosed in
 an ENTER/LEAVE pair.

Inside such a pseudo-block the following service is available:

SAVEINT(int i)

SAVEIV(IV i)

SAVEI32(I32 i)

SAVELONG(long i)

These macros arrange things to restore the value of integer variable i at the end of enclosing
pseudo-block.

SAVESPTR(s)

SAVEPPTR(p)

These macros arrange things to restore the value of pointers s and p. s must be a pointer of a
type which survives conversion to SV* and back, p should be able to survive conversion to
char*
 and back.

Perl version 5.8.8 documentation - perlguts

Page 20http://perldoc.perl.org

SAVEFREESV(SV *sv)

The refcount of sv would be decremented at the end of pseudo-block. This is similar to
sv_2mortal in that it is also a
 mechanism for doing a delayed SvREFCNT_dec. However,
while sv_2mortal
 extends the lifetime of sv until the beginning of the next statement,
SAVEFREESV extends it until the end of the enclosing scope. These
 lifetimes can be wildly
different.

Also compare SAVEMORTALIZESV.

SAVEMORTALIZESV(SV *sv)

Just like SAVEFREESV, but mortalizes sv at the end of the current
 scope instead of
decrementing its reference count. This usually has the
 effect of keeping sv alive until the
statement that called the currently
 live scope has finished executing.

SAVEFREEOP(OP *op)

The OP * is op_free()ed at the end of pseudo-block.

SAVEFREEPV(p)

The chunk of memory which is pointed to by p is Safefree()ed at the
 end of pseudo-block.

SAVECLEARSV(SV *sv)

Clears a slot in the current scratchpad which corresponds to sv at
 the end of pseudo-block.

SAVEDELETE(HV *hv, char *key, I32 length)

The key key of hv is deleted at the end of pseudo-block. The
 string pointed to by key is
Safefree()ed. If one has a key in
 short-lived storage, the corresponding string may be
reallocated like
 this:

 SAVEDELETE(PL_defstash, savepv(tmpbuf), strlen(tmpbuf));

SAVEDESTRUCTOR(DESTRUCTORFUNC_NOCONTEXT_t f, void *p)

At the end of pseudo-block the function f is called with the
 only argument p.

SAVEDESTRUCTOR_X(DESTRUCTORFUNC_t f, void *p)

At the end of pseudo-block the function f is called with the
 implicit context argument (if any),
and p.

SAVESTACK_POS()

The current offset on the Perl internal stack (cf. SP) is restored
 at the end of pseudo-block.

The following API list contains functions, thus one needs to
 provide pointers to the modifiable data
explicitly (either C pointers,
 or Perlish GV *s). Where the above macros take int, a similar
 function
takes int *.

SV* save_scalar(GV *gv)

Equivalent to Perl code local $gv.

AV* save_ary(GV *gv)

HV* save_hash(GV *gv)

Similar to save_scalar, but localize @gv and %gv.

void save_item(SV *item)

Duplicates the current value of SV, on the exit from the current ENTER/LEAVE pseudo-block
will restore the value of SV
 using the stored value.

void save_list(SV **sarg, I32 maxsarg)

Perl version 5.8.8 documentation - perlguts

Page 21http://perldoc.perl.org

A variant of save_item which takes multiple arguments via an array sarg of SV* of length
maxsarg.

SV* save_svref(SV **sptr)

Similar to save_scalar, but will reinstate an SV *.

void save_aptr(AV **aptr)

void save_hptr(HV **hptr)

Similar to save_svref, but localize AV * and HV *.

The Alias module implements localization of the basic types within the caller's scope. People who
are interested in how to localize things in
 the containing scope should take a look there too.

Subroutines
XSUBs and the Argument Stack

The XSUB mechanism is a simple way for Perl programs to access C subroutines.
 An XSUB routine
will have a stack that contains the arguments from the Perl
 program, and a way to map from the Perl
data structures to a C equivalent.

The stack arguments are accessible through the ST(n) macro, which returns
 the n'th stack
argument. Argument 0 is the first argument passed in the
 Perl subroutine call. These arguments are
SV*, and can be used anywhere
 an SV* is used.

Most of the time, output from the C routine can be handled through use of
 the RETVAL and OUTPUT
directives. However, there are some cases where the
 argument stack is not already long enough to
handle all the return values.
 An example is the POSIX tzname() call, which takes no arguments, but
returns
 two, the local time zone's standard and summer time abbreviations.

To handle this situation, the PPCODE directive is used and the stack is
 extended using the macro:

 EXTEND(SP, num);

where SP is the macro that represents the local copy of the stack pointer,
 and num is the number of
elements the stack should be extended by.

Now that there is room on the stack, values can be pushed on it using PUSHs
 macro. The pushed
values will often need to be "mortal" (See Reference Counts and Mortality):

 PUSHs(sv_2mortal(newSViv(an_integer)))
 PUSHs(sv_2mortal(newSVuv(an_unsigned_integer)))
 PUSHs(sv_2mortal(newSVnv(a_double)))
 PUSHs(sv_2mortal(newSVpv("Some String",0)))

And now the Perl program calling tzname, the two values will be assigned
 as in:

 ($standard_abbrev, $summer_abbrev) = POSIX::tzname;

An alternate (and possibly simpler) method to pushing values on the stack is
 to use the macro:

 XPUSHs(SV*)

This macro automatically adjust the stack for you, if needed. Thus, you
 do not need to call EXTEND to
extend the stack.

Despite their suggestions in earlier versions of this document the macros (X)PUSH[iunp] are not
suited to XSUBs which return multiple results.
 For that, either stick to the (X)PUSHs macros shown
above, or use the new m(X)PUSH[iunp] macros instead; see Putting a C value on Perl stack.

Perl version 5.8.8 documentation - perlguts

Page 22http://perldoc.perl.org

For more information, consult perlxs and perlxstut.

Calling Perl Routines from within C Programs
There are four routines that can be used to call a Perl subroutine from
 within a C program. These four
are:

 I32 call_sv(SV*, I32);
 I32 call_pv(const char*, I32);
 I32 call_method(const char*, I32);
 I32 call_argv(const char*, I32, register char**);

The routine most often used is call_sv. The SV* argument
 contains either the name of the Perl
subroutine to be called, or a
 reference to the subroutine. The second argument consists of flags
 that
control the context in which the subroutine is called, whether
 or not the subroutine is being passed
arguments, how errors should be
 trapped, and how to treat return values.

All four routines return the number of arguments that the subroutine returned
 on the Perl stack.

These routines used to be called perl_call_sv, etc., before Perl v5.6.0,
 but those names are now
deprecated; macros of the same name are provided for
 compatibility.

When using any of these routines (except call_argv), the programmer
 must manipulate the Perl
stack. These include the following macros and
 functions:

 dSP
 SP
 PUSHMARK()
 PUTBACK
 SPAGAIN
 ENTER
 SAVETMPS
 FREETMPS
 LEAVE
 XPUSH*()
 POP*()

For a detailed description of calling conventions from C to Perl,
 consult perlcall.

Memory Allocation
Allocation

All memory meant to be used with the Perl API functions should be manipulated
 using the macros
described in this section. The macros provide the necessary
 transparency between differences in the
actual malloc implementation that is
 used within perl.

It is suggested that you enable the version of malloc that is distributed
 with Perl. It keeps pools of
various sizes of unallocated memory in
 order to satisfy allocation requests more quickly. However, on
some
 platforms, it may cause spurious malloc or free errors.

The following three macros are used to initially allocate memory :

 Newx(pointer, number, type);
 Newxc(pointer, number, type, cast);
 Newxz(pointer, number, type);

The first argument pointer should be the name of a variable that will
 point to the newly allocated
memory.

The second and third arguments number and type specify how many of
 the specified type of data

Perl version 5.8.8 documentation - perlguts

Page 23http://perldoc.perl.org

structure should be allocated. The argument type is passed to sizeof. The final argument to Newxc
, cast,
 should be used if the pointer argument is different from the type
 argument.

Unlike the Newx and Newxc macros, the Newxz macro calls memzero
 to zero out all the newly
allocated memory.

Reallocation

 Renew(pointer, number, type);
 Renewc(pointer, number, type, cast);
 Safefree(pointer)

These three macros are used to change a memory buffer size or to free a
 piece of memory no longer
needed. The arguments to Renew and Renewc
 match those of New and Newc with the exception of
not needing the
 "magic cookie" argument.

Moving

 Move(source, dest, number, type);
 Copy(source, dest, number, type);
 Zero(dest, number, type);

These three macros are used to move, copy, or zero out previously allocated
 memory. The source
and dest arguments point to the source and
 destination starting points. Perl will move, copy, or zero
out number
 instances of the size of the type data structure (using the sizeof
 function).

PerlIO
The most recent development releases of Perl has been experimenting with
 removing Perl's
dependency on the "normal" standard I/O suite and allowing
 other stdio implementations to be used.
This involves creating a new
 abstraction layer that then calls whichever implementation of stdio Perl

was compiled with. All XSUBs should now use the functions in the PerlIO
 abstraction layer and not
make any assumptions about what kind of stdio
 is being used.

For a complete description of the PerlIO abstraction, consult perlapio.

Putting a C value on Perl stack
A lot of opcodes (this is an elementary operation in the internal perl
 stack machine) put an SV* on the
stack. However, as an optimization
 the corresponding SV is (usually) not recreated each time. The
opcodes
 reuse specially assigned SVs (targets) which are (as a corollary)
 not constantly
freed/created.

Each of the targets is created only once (but see Scratchpads and recursion below), and when an
opcode needs to put
 an integer, a double, or a string on stack, it just sets the
 corresponding parts of
its target and puts the target on stack.

The macro to put this target on stack is PUSHTARG, and it is
 directly used in some opcodes, as well as
indirectly in zillions of
 others, which use it via (X)PUSH[iunp].

Because the target is reused, you must be careful when pushing multiple
 values on the stack. The
following code will not do what you think:

 XPUSHi(10);
 XPUSHi(20);

This translates as "set TARG to 10, push a pointer to TARG onto
 the stack; set TARG to 20, push a
pointer to TARG onto the stack".
 At the end of the operation, the stack does not contain the values 10

and 20, but actually contains two pointers to TARG, which we have set
 to 20.

If you need to push multiple different values then you should either use
 the (X)PUSHs macros, or

Perl version 5.8.8 documentation - perlguts

Page 24http://perldoc.perl.org

else use the new m(X)PUSH[iunp] macros,
 none of which make use of TARG. The (X)PUSHs
macros simply push an
 SV* on the stack, which, as noted under XSUBs and the Argument Stack,
 will
often need to be "mortal". The new m(X)PUSH[iunp] macros make
 this a little easier to achieve by
creating a new mortal for you (via (X)PUSHmortal), pushing that onto the stack (extending it if
necessary
 in the case of the mXPUSH[iunp] macros), and then setting its value.
 Thus, instead of
writing this to "fix" the example above:

 XPUSHs(sv_2mortal(newSViv(10)))
 XPUSHs(sv_2mortal(newSViv(20)))

you can simply write:

 mXPUSHi(10)
 mXPUSHi(20)

On a related note, if you do use (X)PUSH[iunp], then you're going to
 need a dTARG in your variable
declarations so that the *PUSH*
 macros can make use of the local variable TARG. See also dTARGET

and dXSTARG.

Scratchpads
The question remains on when the SVs which are targets for opcodes
 are created. The answer is that
they are created when the current unit --
 a subroutine or a file (for opcodes for statements outside of

subroutines) -- is compiled. During this time a special anonymous Perl
 array is created, which is
called a scratchpad for the current
 unit.

A scratchpad keeps SVs which are lexicals for the current unit and are
 targets for opcodes. One can
deduce that an SV lives on a scratchpad
 by looking on its flags: lexicals have SVs_PADMY set, and
targets have SVs_PADTMP set.

The correspondence between OPs and targets is not 1-to-1. Different
 OPs in the compile tree of the
unit can use the same target, if this
 would not conflict with the expected life of the temporary.

Scratchpads and recursion
In fact it is not 100% true that a compiled unit contains a pointer to
 the scratchpad AV. In fact it
contains a pointer to an AV of
 (initially) one element, and this element is the scratchpad AV. Why do

we need an extra level of indirection?

The answer is recursion, and maybe threads. Both
 these can create several execution pointers
going into the same
 subroutine. For the subroutine-child not write over the temporaries
 for the
subroutine-parent (lifespan of which covers the call to the
 child), the parent and the child should have
different
 scratchpads. (And the lexicals should be separate anyway!)

So each subroutine is born with an array of scratchpads (of length 1).
 On each entry to the subroutine
it is checked that the current
 depth of the recursion is not more than the length of this array, and
 if it
is, new scratchpad is created and pushed into the array.

The targets on this scratchpad are undefs, but they are already
 marked with correct flags.

Compiled code
Code tree

Here we describe the internal form your code is converted to by
 Perl. Start with a simple example:

 $a = $b + $c;

This is converted to a tree similar to this one:

 assign-to
 / \

Perl version 5.8.8 documentation - perlguts

Page 25http://perldoc.perl.org

 + $a
 / \
 $b $c

(but slightly more complicated). This tree reflects the way Perl
 parsed your code, but has nothing to
do with the execution order.
 There is an additional "thread" going through the nodes of the tree
 which
shows the order of execution of the nodes. In our simplified
 example above it looks like:

 $b ---> $c ---> + ---> $a ---> assign-to

But with the actual compile tree for $a = $b + $c it is different:
 some nodes optimized away. As a
corollary, though the actual tree
 contains more nodes than our simplified example, the execution
order
 is the same as in our example.

Examining the tree
If you have your perl compiled for debugging (usually done with -DDEBUGGING on the Configure
command line), you may examine the
 compiled tree by specifying -Dx on the Perl command line. The
output takes several lines per node, and for $b+$c it looks like
 this:

 5 TYPE = add ===> 6
 TARG = 1
 FLAGS = (SCALAR,KIDS)
 {
 TYPE = null ===> (4)
 (was rv2sv)
 FLAGS = (SCALAR,KIDS)
 {
 3 TYPE = gvsv ===> 4
 FLAGS = (SCALAR)
 GV = main::b
 }
 }
 {
 TYPE = null ===> (5)
 (was rv2sv)
 FLAGS = (SCALAR,KIDS)
 {
 4 TYPE = gvsv ===> 5
 FLAGS = (SCALAR)
 GV = main::c
 }
 }

This tree has 5 nodes (one per TYPE specifier), only 3 of them are
 not optimized away (one per
number in the left column). The immediate
 children of the given node correspond to {} pairs on the
same level
 of indentation, thus this listing corresponds to the tree:

 add
 / \
 null null
 | |
 gvsv gvsv

The execution order is indicated by ===> marks, thus it is 3
 4 5 6 (node 6 is not included into
above listing), i.e., gvsv gvsv add whatever.

Perl version 5.8.8 documentation - perlguts

Page 26http://perldoc.perl.org

Each of these nodes represents an op, a fundamental operation inside the
 Perl core. The code which
implements each operation can be found in the pp*.c files; the function which implements the op with
type gvsv
 is pp_gvsv, and so on. As the tree above shows, different ops have
 different numbers of
children: add is a binary operator, as one would
 expect, and so has two children. To accommodate
the various different
 numbers of children, there are various types of op data structure, and
 they link
together in different ways.

The simplest type of op structure is OP: this has no children. Unary
 operators, UNOPs, have one child,
and this is pointed to by the op_first field. Binary operators (BINOPs) have not only an op_first
field but also an op_last field. The most complex type of
 op is a LISTOP, which has any number of
children. In this case, the
 first child is pointed to by op_first and the last child by op_last. The
children in between can be found by iteratively
 following the op_sibling pointer from the first child
to the last.

There are also two other op types: a PMOP holds a regular expression,
 and has no children, and a
LOOP may or may not have children. If the op_children field is non-zero, it behaves like a LISTOP.
To
 complicate matters, if a UNOP is actually a null op after
 optimization (see Compile pass 2: context
propagation) it will still
 have children in accordance with its former type.

Another way to examine the tree is to use a compiler back-end module, such
 as B::Concise.

Compile pass 1: check routines
The tree is created by the compiler while yacc code feeds it
 the constructions it recognizes. Since
yacc works bottom-up, so does
 the first pass of perl compilation.

What makes this pass interesting for perl developers is that some
 optimization may be performed on
this pass. This is optimization by
 so-called "check routines". The correspondence between node
names
 and corresponding check routines is described in opcode.pl (do not
 forget to run make
regen_headers if you modify this file).

A check routine is called when the node is fully constructed except
 for the execution-order thread.
Since at this time there are no
 back-links to the currently constructed node, one can do most any

operation to the top-level node, including freeing it and/or creating
 new nodes above/below it.

The check routine returns the node which should be inserted into the
 tree (if the top-level node was
not modified, check routine returns
 its argument).

By convention, check routines have names ck_*. They are usually
 called from new*OP subroutines
(or convert) (which in turn are
 called from perly.y).

Compile pass 1a: constant folding
Immediately after the check routine is called the returned node is
 checked for being compile-time
executable. If it is (the value is
 judged to be constant) it is immediately executed, and a constant
 node
with the "return value" of the corresponding subtree is
 substituted instead. The subtree is deleted.

If constant folding was not performed, the execution-order thread is
 created.

Compile pass 2: context propagation
When a context for a part of compile tree is known, it is propagated
 down through the tree. At this
time the context can have 5 values
 (instead of 2 for runtime context): void, boolean, scalar, list, and

lvalue. In contrast with the pass 1 this pass is processed from top
 to bottom: a node's context
determines the context for its children.

Additional context-dependent optimizations are performed at this time.
 Since at this moment the
compile tree contains back-references (via
 "thread" pointers), nodes cannot be free()d now. To allow

optimized-away nodes at this stage, such nodes are null()ified instead
 of free()ing (i.e. their type is
changed to OP_NULL).

Perl version 5.8.8 documentation - perlguts

Page 27http://perldoc.perl.org

Compile pass 3: peephole optimization
After the compile tree for a subroutine (or for an eval or a file)
 is created, an additional pass over the
code is performed. This pass
 is neither top-down or bottom-up, but in the execution order (with

additional complications for conditionals). These optimizations are
 done in the subroutine peep().
Optimizations performed at this stage
 are subject to the same restrictions as in the pass 2.

Pluggable runops
The compile tree is executed in a runops function. There are two runops
 functions, in run.c and in
dump.c. Perl_runops_debug is used
 with DEBUGGING and Perl_runops_standard is used
otherwise. For fine
 control over the execution of the compile tree it is possible to provide
 your own
runops function.

It's probably best to copy one of the existing runops functions and
 change it to suit your needs. Then,
in the BOOT section of your XS
 file, add the line:

 PL_runops = my_runops;

This function should be as efficient as possible to keep your programs
 running as fast as possible.

Examining internal data structures with the dump functions
To aid debugging, the source file dump.c contains a number of
 functions which produce formatted
output of internal data structures.

The most commonly used of these functions is Perl_sv_dump; it's used
 for dumping SVs, AVs, HVs,
and CVs. The Devel::Peek module calls sv_dump to produce debugging output from Perl-space,
so users of that
 module should already be familiar with its format.

Perl_op_dump can be used to dump an OP structure or any of its
 derivatives, and produces output
similar to perl -Dx; in fact, Perl_dump_eval will dump the main root of the code being evaluated,

exactly like -Dx.

Other useful functions are Perl_dump_sub, which turns a GV into an
 op tree,
Perl_dump_packsubs which calls Perl_dump_sub on all the
 subroutines in a package like so:
(Thankfully, these are all xsubs, so
 there is no op tree)

 (gdb) print Perl_dump_packsubs(PL_defstash)

 SUB attributes::bootstrap = (xsub 0x811fedc 0)

 SUB UNIVERSAL::can = (xsub 0x811f50c 0)

 SUB UNIVERSAL::isa = (xsub 0x811f304 0)

 SUB UNIVERSAL::VERSION = (xsub 0x811f7ac 0)

 SUB DynaLoader::boot_DynaLoader = (xsub 0x805b188 0)

and Perl_dump_all, which dumps all the subroutines in the stash and
 the op tree of the main root.

How multiple interpreters and concurrency are supported
Background and PERL_IMPLICIT_CONTEXT

The Perl interpreter can be regarded as a closed box: it has an API
 for feeding it code or otherwise
making it do things, but it also has
 functions for its own use. This smells a lot like an object, and
 there
are ways for you to build Perl so that you can have multiple
 interpreters, with one interpreter
represented either as a C structure,
 or inside a thread-specific structure. These structures contain all

Perl version 5.8.8 documentation - perlguts

Page 28http://perldoc.perl.org

the context, the state of that interpreter.

Two macros control the major Perl build flavors: MULTIPLICITY and
 USE_5005THREADS. The
MULTIPLICITY build has a C structure
 that packages all the interpreter state, and there is a similar
thread-specific
 data structure under USE_5005THREADS. In both cases,

PERL_IMPLICIT_CONTEXT is also normally defined, and enables the
 support for passing in a
"hidden" first argument that represents all three
 data structures.

All this obviously requires a way for the Perl internal functions to be
 either subroutines taking some
kind of structure as the first
 argument, or subroutines taking nothing as the first argument. To
 enable
these two very different ways of building the interpreter,
 the Perl source (as it does in so many other
situations) makes heavy
 use of macros and subroutine naming conventions.

First problem: deciding which functions will be public API functions and
 which will be private. All
functions whose names begin S_ are private
 (think "S" for "secret" or "static"). All other functions
begin with
 "Perl_", but just because a function begins with "Perl_" does not mean it is
 part of the API.
(See Internal Functions.) The easiest way to be sure a
 function is part of the API is to find its entry in
perlapi.
 If it exists in perlapi, it's part of the API. If it doesn't, and you
 think it should be (i.e., you need
it for your extension), send mail via perlbug explaining why you think it should be.

Second problem: there must be a syntax so that the same subroutine
 declarations and calls can pass
a structure as their first argument,
 or pass nothing. To solve this, the subroutines are named and

declared in a particular way. Here's a typical start of a static
 function used within the Perl guts:

 STATIC void
 S_incline(pTHX_ char *s)

STATIC becomes "static" in C, and may be #define'd to nothing in some
 configurations in future.

A public function (i.e. part of the internal API, but not necessarily
 sanctioned for use in extensions)
begins like this:

 void
 Perl_sv_setiv(pTHX_ SV* dsv, IV num)

pTHX_ is one of a number of macros (in perl.h) that hide the
 details of the interpreter's context. THX
stands for "thread", "this",
 or "thingy", as the case may be. (And no, George Lucas is not involved. :-)

The first character could be 'p' for a prototype, 'a' for argument,
 or 'd' for declaration, so we have
pTHX, aTHX and dTHX, and
 their variants.

When Perl is built without options that set PERL_IMPLICIT_CONTEXT, there is no
 first argument
containing the interpreter's context. The trailing underscore
 in the pTHX_ macro indicates that the
macro expansion needs a comma
 after the context argument because other arguments follow it. If

PERL_IMPLICIT_CONTEXT is not defined, pTHX_ will be ignored, and the
 subroutine is not
prototyped to take the extra argument. The form of the
 macro without the trailing underscore is used
when there are no additional
 explicit arguments.

When a core function calls another, it must pass the context. This
 is normally hidden via macros.
Consider sv_setiv. It expands into
 something like this:

 #ifdef PERL_IMPLICIT_CONTEXT
 #define sv_setiv(a,b) Perl_sv_setiv(aTHX_ a, b)
 /* can't do this for vararg functions, see below */
 #else
 #define sv_setiv Perl_sv_setiv
 #endif

This works well, and means that XS authors can gleefully write:

Perl version 5.8.8 documentation - perlguts

Page 29http://perldoc.perl.org

 sv_setiv(foo, bar);

and still have it work under all the modes Perl could have been
 compiled with.

This doesn't work so cleanly for varargs functions, though, as macros
 imply that the number of
arguments is known in advance. Instead we
 either need to spell them out fully, passing aTHX_ as the
first
 argument (the Perl core tends to do this with functions like
 Perl_warner), or use a context-free
version.

The context-free version of Perl_warner is called
 Perl_warner_nocontext, and does not take the extra
argument. Instead
 it does dTHX; to get the context from thread-local storage. We #define warner
Perl_warner_nocontext so that extensions get source
 compatibility at the expense of
performance. (Passing an arg is
 cheaper than grabbing it from thread-local storage.)

You can ignore [pad]THXx when browsing the Perl headers/sources.
 Those are strictly for use within
the core. Extensions and embedders
 need only be aware of [pad]THX.

So what happened to dTHR?
dTHR was introduced in perl 5.005 to support the older thread model.
 The older thread model now
uses the THX mechanism to pass context
 pointers around, so dTHR is not useful any more. Perl 5.6.0
and
 later still have it for backward source compatibility, but it is defined
 to be a no-op.

How do I use all this in extensions?
When Perl is built with PERL_IMPLICIT_CONTEXT, extensions that call
 any functions in the Perl API
will need to pass the initial context
 argument somehow. The kicker is that you will need to write it in

such a way that the extension still compiles when Perl hasn't been
 built with
PERL_IMPLICIT_CONTEXT enabled.

There are three ways to do this. First, the easy but inefficient way,
 which is also the default, in order to
maintain source compatibility
 with extensions: whenever XSUB.h is #included, it redefines the aTHX

and aTHX_ macros to call a function that will return the context.
 Thus, something like:

 sv_setiv(sv, num);

in your extension will translate to this when PERL_IMPLICIT_CONTEXT is
 in effect:

 Perl_sv_setiv(Perl_get_context(), sv, num);

or to this otherwise:

 Perl_sv_setiv(sv, num);

You have to do nothing new in your extension to get this; since
 the Perl library provides
Perl_get_context(), it will all just
 work.

The second, more efficient way is to use the following template for
 your Foo.xs:

 #define PERL_NO_GET_CONTEXT /* we want efficiency */
 #include "EXTERN.h"
 #include "perl.h"
 #include "XSUB.h"

 static my_private_function(int arg1, int arg2);

 static SV *
 my_private_function(int arg1, int arg2)
 {

Perl version 5.8.8 documentation - perlguts

Page 30http://perldoc.perl.org

 dTHX; /* fetch context */
 ... call many Perl API functions ...
 }

 [... etc ...]

 MODULE = Foo PACKAGE = Foo

 /* typical XSUB */

 void
 my_xsub(arg)
 int arg
 CODE:
 my_private_function(arg, 10);

Note that the only two changes from the normal way of writing an
 extension is the addition of a
#define PERL_NO_GET_CONTEXT before
 including the Perl headers, followed by a dTHX;
declaration at
 the start of every function that will call the Perl API. (You'll
 know which functions need
this, because the C compiler will complain
 that there's an undeclared identifier in those functions.) No
changes
 are needed for the XSUBs themselves, because the XS() macro is
 correctly defined to pass
in the implicit context if needed.

The third, even more efficient way is to ape how it is done within
 the Perl guts:

 #define PERL_NO_GET_CONTEXT /* we want efficiency */
 #include "EXTERN.h"
 #include "perl.h"
 #include "XSUB.h"

 /* pTHX_ only needed for functions that call Perl API */
 static my_private_function(pTHX_ int arg1, int arg2);

 static SV *
 my_private_function(pTHX_ int arg1, int arg2)
 {
 /* dTHX; not needed here, because THX is an argument */
 ... call Perl API functions ...
 }

 [... etc ...]

 MODULE = Foo PACKAGE = Foo

 /* typical XSUB */

 void
 my_xsub(arg)
 int arg
 CODE:
 my_private_function(aTHX_ arg, 10);

This implementation never has to fetch the context using a function
 call, since it is always passed as

Perl version 5.8.8 documentation - perlguts

Page 31http://perldoc.perl.org

an extra argument. Depending on
 your needs for simplicity or efficiency, you may mix the previous

two approaches freely.

Never add a comma after pTHX yourself--always use the form of the
 macro with the underscore for
functions that take explicit arguments,
 or the form without the argument for functions with no explicit
arguments.

Should I do anything special if I call perl from multiple threads?
If you create interpreters in one thread and then proceed to call them in
 another, you need to make
sure perl's own Thread Local Storage (TLS) slot is
 initialized correctly in each of those threads.

The perl_alloc and perl_clone API functions will automatically set
 the TLS slot to the interpreter
they created, so that there is no need to do
 anything special if the interpreter is always accessed in
the same thread that
 created it, and that thread did not create or call any other interpreters

afterwards. If that is not the case, you have to set the TLS slot of the
 thread before calling any
functions in the Perl API on that particular
 interpreter. This is done by calling the
PERL_SET_CONTEXT macro in that
 thread as the first thing you do:

	 /* do this before doing anything else with some_perl */
	 PERL_SET_CONTEXT(some_perl);

	 ... other Perl API calls on some_perl go here ...

Future Plans and PERL_IMPLICIT_SYS
Just as PERL_IMPLICIT_CONTEXT provides a way to bundle up everything
 that the interpreter
knows about itself and pass it around, so too are
 there plans to allow the interpreter to bundle up
everything it knows
 about the environment it's running on. This is enabled with the

PERL_IMPLICIT_SYS macro. Currently it only works with USE_ITHREADS
 and
USE_5005THREADS on Windows (see inside iperlsys.h).

This allows the ability to provide an extra pointer (called the "host"
 environment) for all the system
calls. This makes it possible for
 all the system stuff to maintain their own state, broken down into

seven C structures. These are thin wrappers around the usual system
 calls (see win32/perllib.c) for
the default perl executable, but for a
 more ambitious host (like the one that would do fork() emulation)
all
 the extra work needed to pretend that different interpreters are
 actually different "processes",
would be done here.

The Perl engine/interpreter and the host are orthogonal entities.
 There could be one or more
interpreters in a process, and one or
 more "hosts", with free association between them.

Internal Functions
All of Perl's internal functions which will be exposed to the outside
 world are prefixed by Perl_ so
that they will not conflict with XS
 functions or functions used in a program in which Perl is embedded.

Similarly, all global variables begin with PL_. (By convention,
 static functions start with S_.)

Inside the Perl core, you can get at the functions either with or
 without the Perl_ prefix, thanks to a
bunch of defines that live in embed.h. This header file is generated automatically from embed.pl and
embed.fnc. embed.pl also creates the prototyping
 header files for the internal functions, generates the
documentation
 and a lot of other bits and pieces. It's important that when you add
 a new function to
the core or change an existing one, you change the
 data in the table in embed.fnc as well. Here's a
sample entry from
 that table:

 Apd |SV** |av_fetch |AV* ar|I32 key|I32 lval

The second column is the return type, the third column the name. Columns
 after that are the
arguments. The first column is a set of flags:

Perl version 5.8.8 documentation - perlguts

Page 32http://perldoc.perl.org

A

This function is a part of the public API. All such functions should also
 have 'd', very few do not.

p

This function has a Perl_ prefix; i.e. it is defined as Perl_av_fetch.

d

This function has documentation using the apidoc feature which we'll
 look at in a second.
Some functions have 'd' but not 'A'; docs are good.

Other available flags are:

s

This is a static function and is defined as STATIC S_whatever, and
 usually called within the
sources as whatever(...).

n

This does not need a interpreter context, so the definition has no pTHX, and it follows that
callers don't use aTHX. (See "Background and PERL_IMPLICIT_CONTEXT" in perlguts.)

r

This function never returns; croak, exit and friends.

f

This function takes a variable number of arguments, printf style.
 The argument list should
end with ..., like this:

 Afprd |void |croak |const char* pat|...

M

This function is part of the experimental development API, and may change
 or disappear without
notice.

o

This function should not have a compatibility macro to define, say, Perl_parse to parse. It
must be called as Perl_parse.

x

This function isn't exported out of the Perl core.

m

This is implemented as a macro.

X

This function is explicitly exported.

E

This function is visible to extensions included in the Perl core.

b

Binary backward compatibility; this function is a macro but also has
 a Perl_ implementation
(which is exported).

others

See the comments at the top of embed.fnc for others.

Perl version 5.8.8 documentation - perlguts

Page 33http://perldoc.perl.org

If you edit embed.pl or embed.fnc, you will need to run make regen_headers to force a rebuild of
embed.h and other
 auto-generated files.

Formatted Printing of IVs, UVs, and NVs
If you are printing IVs, UVs, or NVS instead of the stdio(3) style
 formatting codes like %d, %ld, %f,
you should use the
 following macros for portability

 IVdf IV in decimal
 UVuf UV in decimal
 UVof UV in octal
 UVxf UV in hexadecimal
 NVef NV %e-like
 NVff NV %f-like
 NVgf NV %g-like

These will take care of 64-bit integers and long doubles.
 For example:

 printf("IV is %"IVdf"\n", iv);

The IVdf will expand to whatever is the correct format for the IVs.

If you are printing addresses of pointers, use UVxf combined
 with PTR2UV(), do not use %lx or %p.

Pointer-To-Integer and Integer-To-Pointer
Because pointer size does not necessarily equal integer size,
 use the follow macros to do it right.

 PTR2UV(pointer)
 PTR2IV(pointer)
 PTR2NV(pointer)
 INT2PTR(pointertotype, integer)

For example:

 IV iv = ...;
 SV *sv = INT2PTR(SV*, iv);

and

 AV *av = ...;
 UV uv = PTR2UV(av);

Source Documentation
There's an effort going on to document the internal functions and
 automatically produce reference
manuals from them - perlapi is one
 such manual which details all the functions which are available to
XS
 writers. perlintern is the autogenerated manual for the functions
 which are not part of the API and
are supposedly for internal use only.

Source documentation is created by putting POD comments into the C
 source, like this:

 /*
 =for apidoc sv_setiv

 Copies an integer into the given SV. Does not handle 'set' magic. See
 C<sv_setiv_mg>.

 =cut

Perl version 5.8.8 documentation - perlguts

Page 34http://perldoc.perl.org

 */

Please try and supply some documentation if you add functions to the
 Perl core.

Backwards compatibility
The Perl API changes over time. New functions are added or the interfaces
 of existing functions are
changed. The Devel::PPPort module tries to
 provide compatibility code for some of these
changes, so XS writers don't
 have to code it themselves when supporting multiple versions of Perl.

Devel::PPPort generates a C header file ppport.h that can also
 be run as a Perl script. To
generate ppport.h, run:

 perl -MDevel::PPPort -eDevel::PPPort::WriteFile

Besides checking existing XS code, the script can also be used to retrieve
 compatibility information
for various API calls using the --api-info
 command line switch. For example:

 % perl ppport.h --api-info=sv_magicext

For details, see perldoc ppport.h.

Unicode Support
Perl 5.6.0 introduced Unicode support. It's important for porters and XS
 writers to understand this
support and make sure that the code they
 write does not corrupt Unicode data.

What is Unicode, anyway?
In the olden, less enlightened times, we all used to use ASCII. Most of
 us did, anyway. The big
problem with ASCII is that it's American. Well,
 no, that's not actually the problem; the problem is that
it's not
 particularly useful for people who don't use the Roman alphabet. What
 used to happen was
that particular languages would stick their own
 alphabet in the upper range of the sequence, between
128 and 255. Of
 course, we then ended up with plenty of variants that weren't quite
 ASCII, and the
whole point of it being a standard was lost.

Worse still, if you've got a language like Chinese or
 Japanese that has hundreds or thousands of
characters, then you really
 can't fit them into a mere 256, so they had to forget about ASCII

altogether, and build their own systems using pairs of numbers to refer
 to one character.

To fix this, some people formed Unicode, Inc. and
 produced a new character set containing all the
characters you can
 possibly think of and more. There are several ways of representing these

characters, and the one Perl uses is called UTF-8. UTF-8 uses
 a variable number of bytes to
represent a character, instead of just
 one. You can learn more about Unicode at
http://www.unicode.org/

How can I recognise a UTF-8 string?
You can't. This is because UTF-8 data is stored in bytes just like
 non-UTF-8 data. The Unicode
character 200, (0xC8 for you hex types)
 capital E with a grave accent, is represented by the two bytes
v196.172. Unfortunately, the non-Unicode string chr(196).chr(172)
 has that byte sequence as
well. So you can't tell just by looking - this
 is what makes Unicode input an interesting problem.

The API function is_utf8_string can help; it'll tell you if a string
 contains only valid UTF-8
characters. However, it can't do the work for
 you. On a character-by-character basis, is_utf8_char
will tell you
 whether the current character in a string is valid UTF-8.

How does UTF-8 represent Unicode characters?
As mentioned above, UTF-8 uses a variable number of bytes to store a
 character. Characters with
values 1...128 are stored in one byte, just
 like good ol' ASCII. Character 129 is stored as v194.129;
this
 continues up to character 191, which is v194.191. Now we've run out of
 bits (191 is binary

Perl version 5.8.8 documentation - perlguts

Page 35http://perldoc.perl.org

10111111) so we move on; 192 is v195.128. And
 so it goes on, moving to three bytes at character
2048.

Assuming you know you're dealing with a UTF-8 string, you can find out
 how long the first character in
it is with the UTF8SKIP macro:

 char *utf = "\305\233\340\240\201";
 I32 len;

 len = UTF8SKIP(utf); /* len is 2 here */
 utf += len;
 len = UTF8SKIP(utf); /* len is 3 here */

Another way to skip over characters in a UTF-8 string is to use utf8_hop, which takes a string and a
number of characters to skip
 over. You're on your own about bounds checking, though, so don't use it
lightly.

All bytes in a multi-byte UTF-8 character will have the high bit set,
 so you can test if you need to do
something special with this
 character like this (the UTF8_IS_INVARIANT() is a macro that tests

whether the byte can be encoded as a single byte even in UTF-8):

 U8 *utf;
 UV uv;	 /* Note: a UV, not a U8, not a char */

 if (!UTF8_IS_INVARIANT(*utf))
 /* Must treat this as UTF-8 */
 uv = utf8_to_uv(utf);
 else
 /* OK to treat this character as a byte */
 uv = *utf;

You can also see in that example that we use utf8_to_uv to get the
 value of the character; the
inverse function uv_to_utf8 is available
 for putting a UV into UTF-8:

 if (!UTF8_IS_INVARIANT(uv))
 /* Must treat this as UTF8 */
 utf8 = uv_to_utf8(utf8, uv);
 else
 /* OK to treat this character as a byte */
 *utf8++ = uv;

You must convert characters to UVs using the above functions if
 you're ever in a situation where you
have to match UTF-8 and non-UTF-8
 characters. You may not skip over UTF-8 characters in this
case. If you
 do this, you'll lose the ability to match hi-bit non-UTF-8 characters;
 for instance, if your
UTF-8 string contains v196.172, and you skip
 that character, you can never match a chr(200) in a
non-UTF-8 string.
 So don't do that!

How does Perl store UTF-8 strings?
Currently, Perl deals with Unicode strings and non-Unicode strings
 slightly differently. If a string has
been identified as being UTF-8
 encoded, Perl will set a flag in the SV, SVf_UTF8. You can check and
manipulate this flag with the following macros:

 SvUTF8(sv)
 SvUTF8_on(sv)
 SvUTF8_off(sv)

Perl version 5.8.8 documentation - perlguts

Page 36http://perldoc.perl.org

This flag has an important effect on Perl's treatment of the string: if
 Unicode data is not properly
distinguished, regular expressions, length, substr and other string handling operations will have

undesirable results.

The problem comes when you have, for instance, a string that isn't
 flagged is UTF-8, and contains a
byte sequence that could be UTF-8 -
 especially when combining non-UTF-8 and UTF-8 strings.

Never forget that the SVf_UTF8 flag is separate to the PV value; you
 need be sure you don't
accidentally knock it off while you're
 manipulating SVs. More specifically, you cannot expect to do this:

 SV *sv;
 SV *nsv;
 STRLEN len;
 char *p;

 p = SvPV(sv, len);
 frobnicate(p);
 nsv = newSVpvn(p, len);

The char* string does not tell you the whole story, and you can't
 copy or reconstruct an SV just by
copying the string value. Check if the
 old SV has the UTF-8 flag set, and act accordingly:

 p = SvPV(sv, len);
 frobnicate(p);
 nsv = newSVpvn(p, len);
 if (SvUTF8(sv))
 SvUTF8_on(nsv);

In fact, your frobnicate function should be made aware of whether or
 not it's dealing with UTF-8
data, so that it can handle the string
 appropriately.

Since just passing an SV to an XS function and copying the data of
 the SV is not enough to copy the
UTF-8 flags, even less right is just
 passing a char * to an XS function.

How do I convert a string to UTF-8?
If you're mixing UTF-8 and non-UTF-8 strings, you might find it necessary
 to upgrade one of the
strings to UTF-8. If you've got an SV, the easiest
 way to do this is:

 sv_utf8_upgrade(sv);

However, you must not do this, for example:

 if (!SvUTF8(left))
 sv_utf8_upgrade(left);

If you do this in a binary operator, you will actually change one of the
 strings that came into the
operator, and, while it shouldn't be noticeable
 by the end user, it can cause problems.

Instead, bytes_to_utf8 will give you a UTF-8-encoded copy of its
 string argument. This is useful
for having the data available for
 comparisons and so on, without harming the original SV. There's also
utf8_to_bytes to go the other way, but naturally, this will fail if
 the string contains any characters
above 255 that can't be represented
 in a single byte.

Is there anything else I need to know?
Not really. Just remember these things:

There's no way to tell if a string is UTF-8 or not. You can tell if an SV
 is UTF-8 by looking at is

Perl version 5.8.8 documentation - perlguts

Page 37http://perldoc.perl.org

SvUTF8 flag. Don't forget to set the flag if
 something should be UTF-8. Treat the flag as part of
the PV, even though
 it's not - if you pass on the PV to somewhere, pass on the flag too.

If a string is UTF-8, always use utf8_to_uv to get at the value,
 unless
UTF8_IS_INVARIANT(*s) in which case you can use *s.

When writing a character uv to a UTF-8 string, always use uv_to_utf8, unless
UTF8_IS_INVARIANT(uv)) in which case
 you can use *s = uv.

Mixing UTF-8 and non-UTF-8 strings is tricky. Use bytes_to_utf8 to get
 a new string which is
UTF-8 encoded. There are tricks you can use to
 delay deciding whether you need to use a
UTF-8 string until you get to a
 high character - HALF_UPGRADE is one of those.

Custom Operators
Custom operator support is a new experimental feature that allows you to
 define your own ops. This is
primarily to allow the building of
 interpreters for other languages in the Perl core, but it also allows

optimizations through the creation of "macro-ops" (ops which perform the
 functions of multiple ops
which are usually executed together, such as gvsv, gvsv, add.)

This feature is implemented as a new op type, OP_CUSTOM. The Perl
 core does not "know" anything
special about this op type, and so it will
 not be involved in any optimizations. This also means that you
can
 define your custom ops to be any op structure - unary, binary, list and
 so on - you like.

It's important to know what custom operators won't do for you. They
 won't let you add new syntax to
Perl, directly. They won't even let you
 add new keywords, directly. In fact, they won't change the way
Perl
 compiles a program at all. You have to do those changes yourself, after
 Perl has compiled the
program. You do this either by manipulating the op
 tree using a CHECK block and the B::Generate
module, or by adding
 a custom peephole optimizer with the optimize module.

When you do this, you replace ordinary Perl ops with custom ops by
 creating ops with the type
OP_CUSTOM and the pp_addr of your own
 PP function. This should be defined in XS code, and
should look like
 the PP ops in pp_*.c. You are responsible for ensuring that your op
 takes the
appropriate number of values from the stack, and you are
 responsible for adding stack marks if
necessary.

You should also "register" your op with the Perl interpreter so that it
 can produce sensible error and
warning messages. Since it is possible to
 have multiple custom ops within the one "logical" op type
OP_CUSTOM,
 Perl uses the value of o->op_ppaddr as a key into the PL_custom_op_descs and
PL_custom_op_names hashes. This means you
 need to enter a name and description for your op at
the appropriate
 place in the PL_custom_op_names and PL_custom_op_descs hashes.

Forthcoming versions of B::Generate (version 1.0 and above) should
 directly support the creation
of custom ops by name.

AUTHORS
Until May 1997, this document was maintained by Jeff Okamoto <okamoto@corp.hp.com>. It is now
maintained as part of Perl
 itself by the Perl 5 Porters <perl5-porters@perl.org>.

With lots of help and suggestions from Dean Roehrich, Malcolm Beattie,
 Andreas Koenig, Paul
Hudson, Ilya Zakharevich, Paul Marquess, Neil
 Bowers, Matthew Green, Tim Bunce, Spider
Boardman, Ulrich Pfeifer,
 Stephen McCamant, and Gurusamy Sarathy.

SEE ALSO
perlapi(1), perlintern(1), perlxs(1), perlembed(1)

