
Perl version 5.8.8 documentation - perlhack

Page 1http://perldoc.perl.org

NAME
perlhack - How to hack at the Perl internals

DESCRIPTION
This document attempts to explain how Perl development takes place,
 and ends with some
suggestions for people wanting to become bona fide
 porters.

The perl5-porters mailing list is where the Perl standard distribution
 is maintained and developed. The
list can get anywhere from 10 to 150
 messages a day, depending on the heatedness of the debate.
Most days
 there are two or three patches, extensions, features, or bugs being
 discussed at a time.

A searchable archive of the list is at either:

 http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/

or

 http://archive.develooper.com/perl5-porters@perl.org/

List subscribers (the porters themselves) come in several flavours.
 Some are quiet curious lurkers,
who rarely pitch in and instead watch
 the ongoing development to ensure they're forewarned of new
changes or
 features in Perl. Some are representatives of vendors, who are there
 to make sure that
Perl continues to compile and work on their
 platforms. Some patch any reported bug that they know
how to fix,
 some are actively patching their pet area (threads, Win32, the regexp
 engine), while others
seem to do nothing but complain. In other
 words, it's your usual mix of technical people.

Over this group of porters presides Larry Wall. He has the final word
 in what does and does not
change in the Perl language. Various
 releases of Perl are shepherded by a "pumpking", a porter

responsible for gathering patches, deciding on a patch-by-patch,
 feature-by-feature basis what will
and will not go into the release.
 For instance, Gurusamy Sarathy was the pumpking for the 5.6
release of
 Perl, and Jarkko Hietaniemi was the pumpking for the 5.8 release, and
 Rafael
Garcia-Suarez holds the pumpking crown for the 5.10 release.

In addition, various people are pumpkings for different things. For
 instance, Andy Dougherty and
Jarkko Hietaniemi did a grand job as the Configure pumpkin up till the 5.8 release. For the 5.10
release
 H.Merijn Brand took over.

Larry sees Perl development along the lines of the US government:
 there's the Legislature (the
porters), the Executive branch (the
 pumpkings), and the Supreme Court (Larry). The legislature can

discuss and submit patches to the executive branch all they like, but
 the executive branch is free to
veto them. Rarely, the Supreme Court
 will side with the executive branch over the legislature, or the

legislature over the executive branch. Mostly, however, the
 legislature and the executive branch are
supposed to get along and
 work out their differences without impeachment or court cases.

You might sometimes see reference to Rule 1 and Rule 2. Larry's power
 as Supreme Court is
expressed in The Rules:

1 Larry is always by definition right about how Perl should behave.
 This means he has final veto
power on the core functionality.

2 Larry is allowed to change his mind about any matter at a later date,
 regardless of whether he
previously invoked Rule 1.

Got that? Larry is always right, even when he was wrong. It's rare
 to see either Rule exercised, but
they are often alluded to.

New features and extensions to the language are contentious, because
 the criteria used by the
pumpkings, Larry, and other porters to decide
 which features should be implemented and
incorporated are not codified
 in a few small design goals as with some other languages. Instead,
 the

Perl version 5.8.8 documentation - perlhack

Page 2http://perldoc.perl.org

heuristics are flexible and often difficult to fathom. Here is
 one person's list, roughly in decreasing
order of importance, of
 heuristics that new features have to be weighed against:

Does concept match the general goals of Perl?

These haven't been written anywhere in stone, but one approximation
 is:

 1. Keep it fast, simple, and useful.
 2. Keep features/concepts as orthogonal as possible.
 3. No arbitrary limits (platforms, data sizes, cultures).
 4. Keep it open and exciting to use/patch/advocate Perl everywhere.
 5. Either assimilate new technologies, or build bridges to them.

Where is the implementation?

All the talk in the world is useless without an implementation. In
 almost every case, the person
or people who argue for a new feature
 will be expected to be the ones who implement it.
Porters capable
 of coding new features have their own agendas, and are not available
 to
implement your (possibly good) idea.

Backwards compatibility

It's a cardinal sin to break existing Perl programs. New warnings are
 contentious--some say
that a program that emits warnings is not
 broken, while others say it is. Adding keywords has
the potential to
 break programs, changing the meaning of existing token sequences or

functions might break programs.

Could it be a module instead?

Perl 5 has extension mechanisms, modules and XS, specifically to avoid
 the need to keep
changing the Perl interpreter. You can write modules
 that export functions, you can give those
functions prototypes so they
 can be called like built-in functions, you can even write XS code
to
 mess with the runtime data structures of the Perl interpreter if you
 want to implement really
complicated things. If it can be done in a
 module instead of in the core, it's highly unlikely to be
added.

Is the feature generic enough?

Is this something that only the submitter wants added to the language,
 or would it be broadly
useful? Sometimes, instead of adding a feature
 with a tight focus, the porters might decide to
wait until someone
 implements the more generalized feature. For instance, instead of

implementing a "delayed evaluation" feature, the porters are waiting
 for a macro system that
would permit delayed evaluation and much more.

Does it potentially introduce new bugs?

Radical rewrites of large chunks of the Perl interpreter have the
 potential to introduce new
bugs. The smaller and more localized the
 change, the better.

Does it preclude other desirable features?

A patch is likely to be rejected if it closes off future avenues of
 development. For instance, a
patch that placed a true and final
 interpretation on prototypes is likely to be rejected because
there
 are still options for the future of prototypes that haven't been
 addressed.

Is the implementation robust?

Good patches (tight code, complete, correct) stand more chance of
 going in. Sloppy or
incorrect patches might be placed on the back
 burner until the pumpking has time to fix, or
might be discarded
 altogether without further notice.

Is the implementation generic enough to be portable?

The worst patches make use of a system-specific features. It's highly
 unlikely that nonportable
additions to the Perl language will be
 accepted.

Perl version 5.8.8 documentation - perlhack

Page 3http://perldoc.perl.org

Is the implementation tested?

Patches which change behaviour (fixing bugs or introducing new features)
 must include
regression tests to verify that everything works as expected.
 Without tests provided by the
original author, how can anyone else changing
 perl in the future be sure that they haven't
unwittingly broken the behaviour
 the patch implements? And without tests, how can the
patch's author be
 confident that his/her hard work put into the patch won't be accidentally

thrown away by someone in the future?

Is there enough documentation?

Patches without documentation are probably ill-thought out or
 incomplete. Nothing can be
added without documentation, so submitting
 a patch for the appropriate manpages as well as
the source code is
 always a good idea.

Is there another way to do it?

Larry said "Although the Perl Slogan is There's More Than One Way
 to Do It, I hesitate to
make 10 ways to do something". This is a
 tricky heuristic to navigate, though--one man's
essential addition is
 another man's pointless cruft.

Does it create too much work?

Work for the pumpking, work for Perl programmers, work for module
 authors, ... Perl is
supposed to be easy.

Patches speak louder than words

Working code is always preferred to pie-in-the-sky ideas. A patch to
 add a feature stands a
much higher chance of making it to the language
 than does a random feature request, no
matter how fervently argued the
 request might be. This ties into "Will it be useful?", as the fact

that someone took the time to make the patch demonstrates a strong
 desire for the feature.

If you're on the list, you might hear the word "core" bandied
 around. It refers to the standard
distribution. "Hacking on the
 core" means you're changing the C source code to the Perl
 interpreter.
"A core module" is one that ships with Perl.

Keeping in sync
The source code to the Perl interpreter, in its different versions, is
 kept in a repository managed by a
revision control system (which is
 currently the Perforce program, see http://perforce.com/). The

pumpkings and a few others have access to the repository to check in
 changes. Periodically the
pumpking for the development version of Perl
 will release a new version, so the rest of the porters can
see what's
 changed. The current state of the main trunk of repository, and patches
 that describe the
individual changes that have happened since the last
 public release are available at this location:

 http://public.activestate.com/pub/apc/
 ftp://public.activestate.com/pub/apc/

If you're looking for a particular change, or a change that affected
 a particular set of files, you may find
the Perl Repository Browser
 useful:

 http://public.activestate.com/cgi-bin/perlbrowse

You may also want to subscribe to the perl5-changes mailing list to
 receive a copy of each patch that
gets submitted to the maintenance
 and development "branches" of the perl repository. See

http://lists.perl.org/ for subscription information.

If you are a member of the perl5-porters mailing list, it is a good
 thing to keep in touch with the most
recent changes. If not only to
 verify if what you would have posted as a bug report isn't already
 solved
in the most recent available perl development branch, also
 known as perl-current, bleading edge perl,
bleedperl or bleadperl.

Perl version 5.8.8 documentation - perlhack

Page 4http://perldoc.perl.org

Needless to say, the source code in perl-current is usually in a perpetual
 state of evolution. You
should expect it to be very buggy. Do not use
 it for any purpose other than testing and development.

Keeping in sync with the most recent branch can be done in several ways,
 but the most convenient
and reliable way is using rsync, available at
 ftp://rsync.samba.org/pub/rsync/ . (You can also get the
most recent
 branch by FTP.)

If you choose to keep in sync using rsync, there are two approaches
 to doing so:

rsync'ing the source tree

Presuming you are in the directory where your perl source resides
 and you have rsync
installed and available, you can "upgrade" to
 the bleadperl using:

 # rsync -avz rsync://public.activestate.com/perl-current/ .

This takes care of updating every single item in the source tree to
 the latest applied patch
level, creating files that are new (to your
 distribution) and setting date/time stamps of existing
files to
 reflect the bleadperl status.

Note that this will not delete any files that were in '.' before
 the rsync. Once you are sure that
the rsync is running correctly,
 run it with the --delete and the --dry-run options like this:

 # rsync -avz --delete --dry-run
rsync://public.activestate.com/perl-current/ .

This will simulate an rsync run that also deletes files not
 present in the bleadperl master copy.
Observe the results from
 this run closely. If you are sure that the actual run would delete
 no
files precious to you, you could remove the '--dry-run' option.

You can than check what patch was the latest that was applied by
 looking in the file .patch,
which will show the number of the
 latest patch.

If you have more than one machine to keep in sync, and not all of
 them have access to the
WAN (so you are not able to rsync all the
 source trees to the real source), there are some
ways to get around
 this problem.

Using rsync over the LAN

Set up a local rsync server which makes the rsynced source tree
 available to the LAN
and sync the other machines against this
 directory.

From http://rsync.samba.org/README.html :

 "Rsync uses rsh or ssh for communication. It does not need to
 be
 setuid and requires no special privileges for installation.
 It
 does not require an inetd entry or a daemon. You must,
however,
 have a working rsh or ssh system. Using ssh is recommended
for
 its security features."

Using pushing over the NFS

Having the other systems mounted over the NFS, you can take an
 active pushing
approach by checking the just updated tree against
 the other not-yet synced trees. An
example would be

 #!/usr/bin/perl -w

 use strict;
 use File::Copy;

Perl version 5.8.8 documentation - perlhack

Page 5http://perldoc.perl.org

 my %MF = map {
 m/(\S+)/;
 $1 => [(stat $1)[2, 7, 9]];	 # mode, size, mtime
 } `cat MANIFEST`;

 my %remote = map { $_ => "/$_/pro/3gl/CPAN/perl-5.7.1" }
qw(host1 host2);

 foreach my $host (keys %remote) {
 unless (-d $remote{$host}) {
	 print STDERR "Cannot Xsync for host $host\n";
	 next;
	 }
 foreach my $file (keys %MF) {
	 my $rfile = "$remote{$host}/$file";
	 my ($mode, $size, $mtime) = (stat $rfile)[2, 7, 9];
	 defined $size or ($mode, $size, $mtime) = (0, 0, 0);
	 $size == $MF{$file}[1] && $mtime == $MF{$file}[2] and next;
	 printf "%4s %-34s %8d %9d %8d %9d\n",
	 $host, $file, $MF{$file}[1], $MF{$file}[2], $size,
$mtime;
	 unlink $rfile;
	 copy ($file, $rfile);
	 utime time, $MF{$file}[2], $rfile;
	 chmod $MF{$file}[0], $rfile;
	 }
 }

though this is not perfect. It could be improved with checking
 file checksums before
updating. Not all NFS systems support
 reliable utime support (when used over the
NFS).

rsync'ing the patches

The source tree is maintained by the pumpking who applies patches to
 the files in the tree.
These patches are either created by the
 pumpking himself using diff -c after updating the
file manually or
 by applying patches sent in by posters on the perl5-porters list.
 These patches
are also saved and rsync'able, so you can apply them
 yourself to the source files.

Presuming you are in a directory where your patches reside, you can
 get them in sync with

 # rsync -avz rsync://public.activestate.com/perl-current-diffs/ .

This makes sure the latest available patch is downloaded to your
 patch directory.

It's then up to you to apply these patches, using something like

 # last=`ls -t *.gz | sed q`
 # rsync -avz rsync://public.activestate.com/perl-current-diffs/ .
 # find . -name '*.gz' -newer $last -exec gzcat {} \; >blead.patch
 # cd ../perl-current
 # patch -p1 -N <../perl-current-diffs/blead.patch

or, since this is only a hint towards how it works, use CPAN-patchaperl
 from Andreas König to
have better control over the patching process.

Why rsync the source tree
It's easier to rsync the source tree

Since you don't have to apply the patches yourself, you are sure all
 files in the source tree are

Perl version 5.8.8 documentation - perlhack

Page 6http://perldoc.perl.org

in the right state.

It's more reliable

While both the rsync-able source and patch areas are automatically
 updated every few
minutes, keep in mind that applying patches may
 sometimes mean careful hand-holding,
especially if your version of
 the patch program does not understand how to deal with new
files,
 files with 8-bit characters, or files without trailing newlines.

Why rsync the patches
It's easier to rsync the patches

If you have more than one machine that you want to keep in track with
 bleadperl, it's easier to
rsync the patches only once and then apply
 them to all the source trees on the different
machines.

In case you try to keep in pace on 5 different machines, for which
 only one of them has access
to the WAN, rsync'ing all the source
 trees should than be done 5 times over the NFS. Having

rsync'ed the patches only once, I can apply them to all the source
 trees automatically. Need
you say more ;-)

It's a good reference

If you do not only like to have the most recent development branch,
 but also like to fix bugs, or
extend features, you want to dive
 into the sources. If you are a seasoned perl core diver, you
don't
 need no manuals, tips, roadmaps, perlguts.pod or other aids to find
 your way around.
But if you are a starter, the patches may help you
 in finding where you should start and how to
change the bits that
 bug you.

The file Changes is updated on occasions the pumpking sees as his
 own little sync points. On
those occasions, he releases a tar-ball of
 the current source tree (i.e. perl@7582.tar.gz),
which will be an
 excellent point to start with when choosing to use the 'rsync the
 patches'
scheme. Starting with perl@7582, which means a set of source
 files on which the latest
applied patch is number 7582, you apply all
 succeeding patches available from then on (7583,
7584, ...).

You can use the patches later as a kind of search archive.

Finding a start point

If you want to fix/change the behaviour of function/feature Foo, just
 scan the patches
for patches that mention Foo either in the subject,
 the comments, or the body of the fix.
A good chance the patch shows
 you the files that are affected by that patch which are
very likely
 to be the starting point of your journey into the guts of perl.

Finding how to fix a bug

If you've found where the function/feature Foo misbehaves, but you
 don't know how to
fix it (but you do know the change you want to
 make), you can, again, peruse the
patches for similar changes and
 look how others apply the fix.

Finding the source of misbehaviour

When you keep in sync with bleadperl, the pumpking would love to see that the
community efforts really work. So after each of his
 sync points, you are to 'make test'
to check if everything is still
 in working order. If it is, you do 'make ok', which will send
an OK
 report to perlbug@perl.org. (If you do not have access to a mailer
 from the
system you just finished successfully 'make test', you can
 do 'make okfile', which
creates the file perl.ok, which you can
 than take to your favourite mailer and mail
yourself).

But of course, as always, things will not always lead to a success
 path, and one or
more test do not pass the 'make test'. Before
 sending in a bug report (using 'make nok'
or 'make nokfile'), check
 the mailing list if someone else has reported the bug already
and if
 so, confirm it by replying to that message. If not, you might want to
 trace the

Perl version 5.8.8 documentation - perlhack

Page 7http://perldoc.perl.org

source of that misbehaviour before sending in the bug,
 which will help all the other
porters in finding the solution.

Here the saved patches come in very handy. You can check the list of
 patches to see
which patch changed what file and what change caused
 the misbehaviour. If you note
that in the bug report, it saves the
 one trying to solve it, looking for that point.

If searching the patches is too bothersome, you might consider using
 perl's bugtron to find
more information about discussions and
 ramblings on posted bugs.

If you want to get the best of both worlds, rsync both the source
 tree for convenience,
reliability and ease and rsync the patches
 for reference.

Working with the source
Because you cannot use the Perforce client, you cannot easily generate
 diffs against the repository,
nor will merges occur when you update
 via rsync. If you edit a file locally and then rsync against the

latest source, changes made in the remote copy will overwrite your
 local versions!

The best way to deal with this is to maintain a tree of symlinks to
 the rsync'd source. Then, when you
want to edit a file, you remove
 the symlink, copy the real file into the other tree, and edit it. You
 can
then diff your edited file against the original to generate a
 patch, and you can safely update the
original tree.

Perl's Configure script can generate this tree of symlinks for you.
 The following example assumes that
you have used rsync to pull a copy
 of the Perl source into the perl-rsync directory. In the directory

above that one, you can execute the following commands:

 mkdir perl-dev
 cd perl-dev
 ../perl-rsync/Configure -Dmksymlinks -Dusedevel -D"optimize=-g"

This will start the Perl configuration process. After a few prompts,
 you should see something like this:

 Symbolic links are supported.

 Checking how to test for symbolic links...
 Your builtin 'test -h' may be broken.
 Trying external '/usr/bin/test -h'.
 You can test for symbolic links with '/usr/bin/test -h'.

 Creating the symbolic links...
 (First creating the subdirectories...)
 (Then creating the symlinks...)

The specifics may vary based on your operating system, of course.
 After you see this, you can abort
the Configure script, and you
 will see that the directory you are in has a tree of symlinks to the
perl-rsync directories and files.

If you plan to do a lot of work with the Perl source, here are some
 Bourne shell script functions that
can make your life easier:

 function edit {
	 if [-L $1]; then
	 mv $1 $1.orig
		 cp $1.orig $1
		 vi $1
	 else
	 /bin/vi $1

Perl version 5.8.8 documentation - perlhack

Page 8http://perldoc.perl.org

		 fi
 }

 function unedit {
	 if [-L $1.orig]; then
	 rm $1
		 mv $1.orig $1
		 fi
 }

Replace "vi" with your favorite flavor of editor.

Here is another function which will quickly generate a patch for the
 files which have been edited in
your symlink tree:

 mkpatchorig() {
	 local diffopts
	 for f in `find . -name '*.orig' | sed s,^\./,,`
		 do
		 case `echo $f | sed 's,.orig$,,;s,.*\.,,'` in
			 c) diffopts=-p ;;
		 pod) diffopts='-F^=' ;;
		 *) diffopts= ;;
		 esac
		 diff -du $diffopts $f `echo $f | sed 's,.orig$,,'`
		 done
 }

This function produces patches which include enough context to make
 your changes obvious. This
makes it easier for the Perl pumpking(s)
 to review them when you send them to the perl5-porters list,
and that
 means they're more likely to get applied.

This function assumed a GNU diff, and may require some tweaking for
 other diff variants.

Perlbug administration
There is a single remote administrative interface for modifying bug status, category, open issues etc.
using the RT bugtracker system, maintained
 by Robert Spier. Become an administrator, and close
any bugs you can get your sticky mitts on:

	 http://rt.perl.org

The bugtracker mechanism for perl5 bugs in particular is at:

	 http://bugs6.perl.org/perlbug

To email the bug system administrators:

	 "perlbug-admin" <perlbug-admin@perl.org>

Submitting patches
Always submit patches to perl5-porters@perl.org. If you're
 patching a core module and there's an
author listed, send the author a
 copy (see Patching a core module). This lets other porters review

your patch, which catches a surprising number of errors in patches.
 Either use the diff program
(available in source code form from
 ftp://ftp.gnu.org/pub/gnu/ , or use Johan Vromans' makepatch

(available from CPAN/authors/id/JV/). Unified diffs are preferred,
 but context diffs are accepted. Do
not send RCS-style diffs or diffs
 without context lines. More information is given in the

Perl version 5.8.8 documentation - perlhack

Page 9http://perldoc.perl.org

Porting/patching.pod file in the Perl source distribution. Please
 patch against the latest development
version (e.g., if you're
 fixing a bug in the 5.005 track, patch against the latest 5.005_5x
 version). Only
patches that survive the heat of the development
 branch get applied to maintenance versions.

Your patch should update the documentation and test suite. See Writing a test.

To report a bug in Perl, use the program perlbug which comes with
 Perl (if you can't get Perl to work,
send mail to the address perlbug@perl.org or perlbug@perl.com). Reporting bugs through perlbug
feeds into the automated bug-tracking system, access to
 which is provided through the web at
http://bugs.perl.org/ . It
 often pays to check the archives of the perl5-porters mailing list to
 see whether
the bug you're reporting has been reported before, and if
 so whether it was considered a bug. See
above for the location of
 the searchable archives.

The CPAN testers (http://testers.cpan.org/) are a group of
 volunteers who test CPAN modules on a
variety of platforms. Perl
 Smokers (http://archives.develooper.com/daily-build@perl.org/)

automatically tests Perl source releases on platforms with various
 configurations. Both efforts
welcome volunteers.

It's a good idea to read and lurk for a while before chipping in.
 That way you'll get to see the dynamic
of the conversations, learn the
 personalities of the players, and hopefully be better prepared to make

a useful contribution when do you speak up.

If after all this you still think you want to join the perl5-porters
 mailing list, send mail to
perl5-porters-subscribe@perl.org. To
 unsubscribe, send mail to perl5-porters-unsubscribe@perl.org.

To hack on the Perl guts, you'll need to read the following things:

perlguts

This is of paramount importance, since it's the documentation of what
 goes where in the Perl
source. Read it over a couple of times and it
 might start to make sense - don't worry if it doesn't
yet, because the
 best way to study it is to read it in conjunction with poking at Perl
 source, and
we'll do that later on.

You might also want to look at Gisle Aas's illustrated perlguts -
 there's no guarantee that this will
be absolutely up-to-date with the
 latest documentation in the Perl core, but the fundamentals will
be
 right. (http://gisle.aas.no/perl/illguts/)

perlxstut and perlxs

A working knowledge of XSUB programming is incredibly useful for core
 hacking; XSUBs use
techniques drawn from the PP code, the portion of the
 guts that actually executes a Perl
program. It's a lot gentler to learn
 those techniques from simple examples and explanation than
from the core
 itself.

perlapi

The documentation for the Perl API explains what some of the internal
 functions do, as well as
the many macros used in the source.

Porting/pumpkin.pod

This is a collection of words of wisdom for a Perl porter; some of it is
 only useful to the pumpkin
holder, but most of it applies to anyone
 wanting to go about Perl development.

The perl5-porters FAQ

This should be available from http://simon-cozens.org/writings/p5p-faq ;
 alternatively, you can
get the FAQ emailed to you by sending mail to perl5-porters-faq@perl.org. It contains
hints on reading perl5-porters,
 information on how perl5-porters works and how Perl
development in general
 works.

Perl version 5.8.8 documentation - perlhack

Page 10http://perldoc.perl.org

Finding Your Way Around
Perl maintenance can be split into a number of areas, and certain people
 (pumpkins) will have
responsibility for each area. These areas sometimes
 correspond to files or directories in the source
kit. Among the areas are:

Core modules

Modules shipped as part of the Perl core live in the lib/ and ext/
 subdirectories: lib/ is for the
pure-Perl modules, and ext/
 contains the core XS modules.

Tests

There are tests for nearly all the modules, built-ins and major bits
 of functionality. Test files all
have a .t suffix. Module tests live
 in the lib/ and ext/ directories next to the module being
 tested.
Others live in t/. See Writing a test

Documentation

Documentation maintenance includes looking after everything in the pod/ directory, (as well as
contributing new documentation) and
 the documentation to the modules in core.

Configure

The configure process is the way we make Perl portable across the
 myriad of operating systems
it supports. Responsibility for the
 configure, build and installation process, as well as the overall

portability of the core code rests with the configure pumpkin - others
 help out with individual
operating systems.

The files involved are the operating system directories, (win32/, os2/, vms/ and so on) the shell
scripts which generate config.h
 and Makefile, as well as the metaconfig files which generate
Configure. (metaconfig isn't included in the core distribution.)

Interpreter

And of course, there's the core of the Perl interpreter itself. Let's
 have a look at that in a little
more detail.

Before we leave looking at the layout, though, don't forget that MANIFEST contains not only the file
names in the Perl distribution,
 but short descriptions of what's in them, too. For an overview of the

important files, try this:

 perl -lne 'print if /^[^\/]+\.[ch]\s+/' MANIFEST

Elements of the interpreter
The work of the interpreter has two main stages: compiling the code
 into the internal representation,
or bytecode, and then executing it. "Compiled code" in perlguts explains exactly how the compilation
stage
 happens.

Here is a short breakdown of perl's operation:

Startup

The action begins in perlmain.c. (or miniperlmain.c for miniperl)
 This is very high-level code,
enough to fit on a single screen, and it
 resembles the code found in perlembed; most of the real
action takes
 place in perl.c

First, perlmain.c allocates some memory and constructs a Perl
 interpreter:

 1 PERL_SYS_INIT3(&argc,&argv,&env);
 2
 3 if (!PL_do_undump) {
 4 my_perl = perl_alloc();
 5 if (!my_perl)
 6 exit(1);

Perl version 5.8.8 documentation - perlhack

Page 11http://perldoc.perl.org

 7 perl_construct(my_perl);
 8 PL_perl_destruct_level = 0;
 9 }

Line 1 is a macro, and its definition is dependent on your operating
 system. Line 3 references
PL_do_undump, a global variable - all
 global variables in Perl start with PL_. This tells you
whether the
 current running program was created with the -u flag to perl and then undump,
which means it's going to be false in any sane context.

Line 4 calls a function in perl.c to allocate memory for a Perl
 interpreter. It's quite a simple
function, and the guts of it looks like
 this:

 my_perl =
(PerlInterpreter*)PerlMem_malloc(sizeof(PerlInterpreter));

Here you see an example of Perl's system abstraction, which we'll see
 later: PerlMem_malloc
is either your system's malloc, or Perl's
 own malloc as defined in malloc.c if you selected that
option at
 configure time.

Next, in line 7, we construct the interpreter; this sets up all the
 special variables that Perl needs,
the stacks, and so on.

Now we pass Perl the command line options, and tell it to go:

 exitstatus = perl_parse(my_perl, xs_init, argc, argv, (char
**)NULL);
 if (!exitstatus) {
 exitstatus = perl_run(my_perl);
 }

perl_parse is actually a wrapper around S_parse_body, as defined
 in perl.c, which
processes the command line options, sets up any
 statically linked XS modules, opens the
program and calls yyparse to
 parse it.

Parsing

The aim of this stage is to take the Perl source, and turn it into an op
 tree. We'll see what one of
those looks like later. Strictly speaking,
 there's three things going on here.

yyparse, the parser, lives in perly.c, although you're better off
 reading the original YACC input
in perly.y. (Yes, Virginia, there is a YACC grammar for Perl!) The job of the parser is to take
your
 code and "understand" it, splitting it into sentences, deciding which
 operands go with which
operators and so on.

The parser is nobly assisted by the lexer, which chunks up your input
 into tokens, and decides
what type of thing each token is: a variable
 name, an operator, a bareword, a subroutine, a core
function, and so on.
 The main point of entry to the lexer is yylex, and that and its
 associated
routines can be found in toke.c. Perl isn't much like
 other computer languages; it's highly context
sensitive at times, it can
 be tricky to work out what sort of token something is, or where a token

ends. As such, there's a lot of interplay between the tokeniser and the
 parser, which can get
pretty frightening if you're not used to it.

As the parser understands a Perl program, it builds up a tree of
 operations for the interpreter to
perform during execution. The routines
 which construct and link together the various operations
are to be found
 in op.c, and will be examined later.

Optimization

Now the parsing stage is complete, and the finished tree represents
 the operations that the Perl
interpreter needs to perform to execute our
 program. Next, Perl does a dry run over the tree
looking for
 optimisations: constant expressions such as 3 + 4 will be computed
 now, and the
optimizer will also see if any multiple operations can be
 replaced with a single one. For instance,
to fetch the variable $foo,
 instead of grabbing the glob *foo and looking at the scalar

Perl version 5.8.8 documentation - perlhack

Page 12http://perldoc.perl.org

component, the optimizer fiddles the op tree to use a function which
 directly looks up the scalar
in question. The main optimizer is peep
 in op.c, and many ops have their own optimizing
functions.

Running

Now we're finally ready to go: we have compiled Perl byte code, and all
 that's left to do is run it.
The actual execution is done by the runops_standard function in run.c; more specifically, it's
done by
 these three innocent looking lines:

 while ((PL_op = CALL_FPTR(PL_op->op_ppaddr)(aTHX))) {
 PERL_ASYNC_CHECK();
 }

You may be more comfortable with the Perl version of that:

 PERL_ASYNC_CHECK() while $Perl::op = &{$Perl::op->{function}};

Well, maybe not. Anyway, each op contains a function pointer, which
 stipulates the function
which will actually carry out the operation.
 This function will return the next op in the sequence -
this allows for
 things like if which choose the next op dynamically at run time.
 The
PERL_ASYNC_CHECK makes sure that things like signals interrupt
 execution if required.

The actual functions called are known as PP code, and they're spread
 between four files:
pp_hot.c contains the "hot" code, which is most
 often used and highly optimized, pp_sys.c
contains all the
 system-specific functions, pp_ctl.c contains the functions which
 implement
control structures (if, while and the like) and pp.c
 contains everything else. These are, if you
like, the C code for Perl's
 built-in functions and operators.

Note that each pp_ function is expected to return a pointer to the next
 op. Calls to perl subs
(and eval blocks) are handled within the same
 runops loop, and do not consume extra space on
the C stack. For example, pp_entersub and pp_entertry just push a CxSUB or CxEVAL
block
 struct onto the context stack which contain the address of the op
 following the sub call or
eval. They then return the first op of that sub
 or eval block, and so execution continues of that
sub or block. Later, a pp_leavesub or pp_leavetry op pops the CxSUB or CxEVAL,
 retrieves
the return op from it, and returns it.

Exception handing

Perl's exception handing (i.e. die etc) is built on top of the low-level setjmp()/longjmp()
C-library functions. These basically provide a
 way to capture the current PC and SP registers
and later restore them; i.e.
 a longjmp() continues at the point in code where a previous
setjmp()
 was done, with anything further up on the C stack being lost. This is why
 code
should always save values using SAVE_FOO rather than in auto
 variables.

The perl core wraps setjmp() etc in the macros JMPENV_PUSH and JMPENV_JUMP. The basic
rule of perl exceptions is that exit, and die (in the absence of eval) perform a
JMPENV_JUMP(2), while die within eval does a JMPENV_JUMP(3).

At entry points to perl, such as perl_parse(), perl_run() and call_sv(cv, G_EVAL)
each does a JMPENV_PUSH, then enter a runops
 loop or whatever, and handle possible
exception returns. For a 2 return,
 final cleanup is performed, such as popping stacks and calling
CHECK or END blocks. Amongst other things, this is how scope cleanup still
 occurs during an
exit.

If a die can find a CxEVAL block on the context stack, then the
 stack is popped to that level and
the return op in that block is assigned
 to PL_restartop; then a JMPENV_JUMP(3) is
performed. This normally
 passes control back to the guard. In the case of perl_run and
call_sv, a non-null PL_restartop triggers re-entry to the runops
 loop. The is the normal way
that die or croak is handled within an eval.

Sometimes ops are executed within an inner runops loop, such as tie, sort
 or overload code. In
this case, something like

Perl version 5.8.8 documentation - perlhack

Page 13http://perldoc.perl.org

 sub FETCH { eval { die } }

would cause a longjmp right back to the guard in perl_run, popping both
 runops loops, which
is clearly incorrect. One way to avoid this is for the
 tie code to do a JMPENV_PUSH before
executing FETCH in the inner
 runops loop, but for efficiency reasons, perl in fact just sets a flag,

using CATCH_SET(TRUE). The pp_require, pp_entereval and pp_entertry ops check
this flag, and if true, they call docatch,
 which does a JMPENV_PUSH and starts a new runops
level to execute the
 code, rather than doing it on the current loop.

As a further optimisation, on exit from the eval block in the FETCH,
 execution of the code
following the block is still carried on in the inner
 loop. When an exception is raised, docatch
compares the JMPENV
 level of the CxEVAL with PL_top_env and if they differ, just
 re-throws
the exception. In this way any inner loops get popped.

Here's an example.

 1: eval { tie @a, 'A' };
 2: sub A::TIEARRAY {
 3: eval { die };
 4: die;
 5: }

To run this code, perl_run is called, which does a JMPENV_PUSH then
 enters a runops loop.
This loop executes the eval and tie ops on line 1,
 with the eval pushing a CxEVAL onto the
context stack.

The pp_tie does a CATCH_SET(TRUE), then starts a second runops loop
 to execute the body
of TIEARRAY. When it executes the entertry op on
 line 3, CATCH_GET is true, so pp_entertry
calls docatch which
 does a JMPENV_PUSH and starts a third runops loop, which then executes

the die op. At this point the C call stack looks like this:

 Perl_pp_die
 Perl_runops # third loop
 S_docatch_body
 S_docatch
 Perl_pp_entertry
 Perl_runops # second loop
 S_call_body
 Perl_call_sv
 Perl_pp_tie
 Perl_runops # first loop
 S_run_body
 perl_run
 main

and the context and data stacks, as shown by -Dstv, look like:

 STACK 0: MAIN
 CX 0: BLOCK =>
 CX 1: EVAL => AV() PV("A"\0)
 retop=leave
 STACK 1: MAGIC
 CX 0: SUB =>
 retop=(null)
 CX 1: EVAL => *
 retop=nextstate

The die pops the first CxEVAL off the context stack, sets PL_restartop from it, does a
JMPENV_JUMP(3), and control returns to
 the top docatch. This then starts another third-level
runops level,
 which executes the nextstate, pushmark and die ops on line 4. At the point
 that the

Perl version 5.8.8 documentation - perlhack

Page 14http://perldoc.perl.org

second pp_die is called, the C call stack looks exactly like
 that above, even though we are no
longer within an inner eval; this is
 because of the optimization mentioned earlier. However, the
context stack
 now looks like this, ie with the top CxEVAL popped:

 STACK 0: MAIN
 CX 0: BLOCK =>
 CX 1: EVAL => AV() PV("A"\0)
 retop=leave
 STACK 1: MAGIC
 CX 0: SUB =>
 retop=(null)

The die on line 4 pops the context stack back down to the CxEVAL, leaving
 it as:

 STACK 0: MAIN
 CX 0: BLOCK =>

As usual, PL_restartop is extracted from the CxEVAL, and a JMPENV_JUMP(3) done, which
pops the C stack back to the docatch:

 S_docatch
 Perl_pp_entertry
 Perl_runops # second loop
 S_call_body
 Perl_call_sv
 Perl_pp_tie
 Perl_runops # first loop
 S_run_body
 perl_run
 main

In this case, because the JMPENV level recorded in the CxEVAL
 differs from the current one,
docatch just does a JMPENV_JUMP(3)
 and the C stack unwinds to:

 perl_run
 main

Because PL_restartop is non-null, run_body starts a new runops loop
 and execution
continues.

Internal Variable Types
You should by now have had a look at perlguts, which tells you about
 Perl's internal variable types:
SVs, HVs, AVs and the rest. If not, do
 that now.

These variables are used not only to represent Perl-space variables, but
 also any constants in the
code, as well as some structures completely
 internal to Perl. The symbol table, for instance, is an
ordinary Perl
 hash. Your code is represented by an SV as it's read into the parser;
 any program files
you call are opened via ordinary Perl filehandles, and
 so on.

The core Devel::Peek module lets us examine SVs from a
 Perl program. Let's see, for instance, how
Perl treats the constant "hello".

 % perl -MDevel::Peek -e 'Dump("hello")'
 1 SV = PV(0xa041450) at 0xa04ecbc
 2 REFCNT = 1
 3 FLAGS = (POK,READONLY,pPOK)
 4 PV = 0xa0484e0 "hello"\0
 5 CUR = 5
 6 LEN = 6

Perl version 5.8.8 documentation - perlhack

Page 15http://perldoc.perl.org

Reading Devel::Peek output takes a bit of practise, so let's go
 through it line by line.

Line 1 tells us we're looking at an SV which lives at 0xa04ecbc in
 memory. SVs themselves are very
simple structures, but they contain a
 pointer to a more complex structure. In this case, it's a PV, a

structure which holds a string value, at location 0xa041450. Line 2
 is the reference count; there are
no other references to this data, so
 it's 1.

Line 3 are the flags for this SV - it's OK to use it as a PV, it's a
 read-only SV (because it's a constant)
and the data is a PV internally.
 Next we've got the contents of the string, starting at location
0xa0484e0.

Line 5 gives us the current length of the string - note that this does not include the null terminator.
Line 6 is not the length of the
 string, but the length of the currently allocated buffer; as the string

grows, Perl automatically extends the available storage via a routine
 called SvGROW.

You can get at any of these quantities from C very easily; just add Sv to the name of the field shown
in the snippet, and you've got a
 macro which will return the value: SvCUR(sv) returns the current

length of the string, SvREFCOUNT(sv) returns the reference count, SvPV(sv, len) returns the
string itself with its length, and so on.
 More macros to manipulate these properties can be found in
perlguts.

Let's take an example of manipulating a PV, from sv_catpvn, in sv.c

 1 void
 2 Perl_sv_catpvn(pTHX_ register SV *sv, register const char *ptr,
register STRLEN len)
 3 {
 4 STRLEN tlen;
 5 char *junk;

 6 junk = SvPV_force(sv, tlen);
 7 SvGROW(sv, tlen + len + 1);
 8 if (ptr == junk)
 9 ptr = SvPVX(sv);
 10 Move(ptr,SvPVX(sv)+tlen,len,char);
 11 SvCUR(sv) += len;
 12 *SvEND(sv) = '\0';
 13 (void)SvPOK_only_UTF8(sv); /* validate pointer */
 14 SvTAINT(sv);
 15 }

This is a function which adds a string, ptr, of length len onto
 the end of the PV stored in sv. The
first thing we do in line 6 is
 make sure that the SV has a valid PV, by calling the SvPV_force
 macro
to force a PV. As a side effect, tlen gets set to the current
 value of the PV, and the PV itself is
returned to junk.

In line 7, we make sure that the SV will have enough room to accommodate
 the old string, the new
string and the null terminator. If LEN isn't
 big enough, SvGROW will reallocate space for us.

Now, if junk is the same as the string we're trying to add, we can
 grab the string directly from the SV;
SvPVX is the address of the PV
 in the SV.

Line 10 does the actual catenation: the Move macro moves a chunk of
 memory around: we move the
string ptr to the end of the PV - that's
 the start of the PV plus its current length. We're moving len
bytes
 of type char. After doing so, we need to tell Perl we've extended the
 string, by altering CUR to
reflect the new length. SvEND is a
 macro which gives us the end of the string, so that needs to be a
"\0".

Line 13 manipulates the flags; since we've changed the PV, any IV or NV
 values will no longer be

Perl version 5.8.8 documentation - perlhack

Page 16http://perldoc.perl.org

valid: if we have $a=10; $a.="6"; we don't
 want to use the old IV of 10. SvPOK_only_utf8 is a
special UTF-8-aware
 version of SvPOK_only, a macro which turns off the IOK and NOK flags
 and
turns on POK. The final SvTAINT is a macro which launders tainted
 data if taint mode is turned on.

AVs and HVs are more complicated, but SVs are by far the most common
 variable type being thrown
around. Having seen something of how we
 manipulate these, let's go on and look at how the op tree
is
 constructed.

Op Trees
First, what is the op tree, anyway? The op tree is the parsed
 representation of your program, as we
saw in our section on parsing, and
 it's the sequence of operations that Perl goes through to execute
your
 program, as we saw in Running.

An op is a fundamental operation that Perl can perform: all the built-in
 functions and operators are
ops, and there are a series of ops which
 deal with concepts the interpreter needs internally - entering
and
 leaving a block, ending a statement, fetching a variable, and so on.

The op tree is connected in two ways: you can imagine that there are two
 "routes" through it, two
orders in which you can traverse the tree.
 First, parse order reflects how the parser understood the
code, and
 secondly, execution order tells perl what order to perform the
 operations in.

The easiest way to examine the op tree is to stop Perl after it has
 finished parsing, and get it to dump
out the tree. This is exactly what
 the compiler backends B::Terse, B::Concise
 and B::Debug do.

Let's have a look at how Perl sees $a = $b + $c:

 % perl -MO=Terse -e '$a=$b+$c'
 1 LISTOP (0x8179888) leave
 2 OP (0x81798b0) enter
 3 COP (0x8179850) nextstate
 4 BINOP (0x8179828) sassign
 5 BINOP (0x8179800) add [1]
 6 UNOP (0x81796e0) null [15]
 7 SVOP (0x80fafe0) gvsv GV (0x80fa4cc) *b
 8 UNOP (0x81797e0) null [15]
 9 SVOP (0x8179700) gvsv GV (0x80efeb0) *c
 10 UNOP (0x816b4f0) null [15]
 11 SVOP (0x816dcf0) gvsv GV (0x80fa460) *a

Let's start in the middle, at line 4. This is a BINOP, a binary
 operator, which is at location 0x8179828.
The specific operator in
 question is sassign - scalar assignment - and you can find the code
 which
implements it in the function pp_sassign in pp_hot.c. As a
 binary operator, it has two children: the
add operator, providing the
 result of $b+$c, is uppermost on line 5, and the left hand side is on
 line
10.

Line 10 is the null op: this does exactly nothing. What is that doing
 there? If you see the null op, it's a
sign that something has been
 optimized away after parsing. As we mentioned in Optimization,
 the
optimization stage sometimes converts two operations into one, for
 example when fetching a scalar
variable. When this happens, instead of
 rewriting the op tree and cleaning up the dangling pointers,
it's easier
 just to replace the redundant operation with the null op. Originally,
 the tree would have
looked like this:

 10 SVOP (0x816b4f0) rv2sv [15]
 11 SVOP (0x816dcf0) gv GV (0x80fa460) *a

That is, fetch the a entry from the main symbol table, and then look
 at the scalar component of it:
gvsv (pp_gvsv into pp_hot.c)
 happens to do both these things.

Perl version 5.8.8 documentation - perlhack

Page 17http://perldoc.perl.org

The right hand side, starting at line 5 is similar to what we've just
 seen: we have the add op (pp_add
also in pp_hot.c) add together
 two gvsvs.

Now, what's this about?

 1 LISTOP (0x8179888) leave
 2 OP (0x81798b0) enter
 3 COP (0x8179850) nextstate

enter and leave are scoping ops, and their job is to perform any
 housekeeping every time you
enter and leave a block: lexical variables
 are tidied up, unreferenced variables are destroyed, and so
on. Every
 program will have those first three lines: leave is a list, and its
 children are all the
statements in the block. Statements are delimited
 by nextstate, so a block is a collection of
nextstate ops, with
 the ops to be performed for each statement being the children of nextstate.
enter is a single op which functions as a marker.

That's how Perl parsed the program, from top to bottom:

 Program
 |
 Statement
 |
 =
 / \
 / \
 $a +
 / \
 $b $c

However, it's impossible to perform the operations in this order:
 you have to find the values of $b and
$c before you add them
 together, for instance. So, the other thread that runs through the op
 tree is
the execution order: each op has a field op_next which points
 to the next op to be run, so following
these pointers tells us how perl
 executes the code. We can traverse the tree in this order using
 the
exec option to B::Terse:

 % perl -MO=Terse,exec -e '$a=$b+$c'
 1 OP (0x8179928) enter
 2 COP (0x81798c8) nextstate
 3 SVOP (0x81796c8) gvsv GV (0x80fa4d4) *b
 4 SVOP (0x8179798) gvsv GV (0x80efeb0) *c
 5 BINOP (0x8179878) add [1]
 6 SVOP (0x816dd38) gvsv GV (0x80fa468) *a
 7 BINOP (0x81798a0) sassign
 8 LISTOP (0x8179900) leave

This probably makes more sense for a human: enter a block, start a
 statement. Get the values of $b
and $c, and add them together.
 Find $a, and assign one to the other. Then leave.

The way Perl builds up these op trees in the parsing process can be
 unravelled by examining perly.y,
the YACC grammar. Let's take the
 piece we need to construct the tree for $a = $b + $c

 1 term : term ASSIGNOP term
 2 { $$ = newASSIGNOP(OPf_STACKED, $1, $2, $3); }
 3 | term ADDOP term
 4 { $$ = newBINOP($2, 0, scalar($1), scalar($3)); }

If you're not used to reading BNF grammars, this is how it works: You're
 fed certain things by the

Perl version 5.8.8 documentation - perlhack

Page 18http://perldoc.perl.org

tokeniser, which generally end up in upper
 case. Here, ADDOP, is provided when the tokeniser sees +
in your
 code. ASSIGNOP is provided when = is used for assigning. These are
 "terminal symbols",
because you can't get any simpler than them.

The grammar, lines one and three of the snippet above, tells you how to
 build up more complex
forms. These complex forms, "non-terminal symbols"
 are generally placed in lower case. term here is
a non-terminal
 symbol, representing a single expression.

The grammar gives you the following rule: you can make the thing on the
 left of the colon if you see
all the things on the right in sequence.
 This is called a "reduction", and the aim of parsing is to
completely
 reduce the input. There are several different ways you can perform a
 reduction, separated
by vertical bars: so, term followed by =
 followed by term makes a term, and term followed by +

followed by term can also make a term.

So, if you see two terms with an = or +, between them, you can
 turn them into a single expression.
When you do this, you execute the
 code in the block on the next line: if you see =, you'll do the code

in line 2. If you see +, you'll do the code in line 4. It's this code
 which contributes to the op tree.

 | term ADDOP term
 { $$ = newBINOP($2, 0, scalar($1), scalar($3)); }

What this does is creates a new binary op, and feeds it a number of
 variables. The variables refer to
the tokens: $1 is the first token in
 the input, $2 the second, and so on - think regular expression

backreferences. $$ is the op returned from this reduction. So, we
 call newBINOP to create a new
binary operator. The first parameter to newBINOP, a function in op.c, is the op type. It's an addition

operator, so we want the type to be ADDOP. We could specify this
 directly, but it's right there as the
second token in the input, so we
 use $2. The second parameter is the op's flags: 0 means "nothing

special". Then the things to add: the left and right hand side of our
 expression, in scalar context.

Stacks
When perl executes something like addop, how does it pass on its
 results to the next op? The answer
is, through the use of stacks. Perl
 has a number of stacks to store things it's currently working on, and
we'll look at the three most important ones here.

Argument stack

Arguments are passed to PP code and returned from PP code using the
 argument stack, ST.
The typical way to handle arguments is to pop
 them off the stack, deal with them how you wish,
and then push the result
 back onto the stack. This is how, for instance, the cosine operator

works:

 NV value;
 value = POPn;
 value = Perl_cos(value);
 XPUSHn(value);

We'll see a more tricky example of this when we consider Perl's macros
 below. POPn gives you
the NV (floating point value) of the top SV on
 the stack: the $x in cos($x). Then we compute
the cosine, and push
 the result back as an NV. The X in XPUSHn means that the stack
 should
be extended if necessary - it can't be necessary here, because we
 know there's room for one
more item on the stack, since we've just
 removed one! The XPUSH* macros at least guarantee
safety.

Alternatively, you can fiddle with the stack directly: SP gives you
 the first element in your portion
of the stack, and TOP* gives you
 the top SV/IV/NV/etc. on the stack. So, for instance, to do
unary
 negation of an integer:

 SETi(-TOPi);

Just set the integer value of the top stack entry to its negation.

Perl version 5.8.8 documentation - perlhack

Page 19http://perldoc.perl.org

Argument stack manipulation in the core is exactly the same as it is in
 XSUBs - see perlxstut,
perlxs and perlguts for a longer
 description of the macros used in stack manipulation.

Mark stack

I say "your portion of the stack" above because PP code doesn't
 necessarily get the whole stack
to itself: if your function calls
 another function, you'll only want to expose the arguments aimed
for the
 called function, and not (necessarily) let it get at your own data. The
 way we do this is to
have a "virtual" bottom-of-stack, exposed to each
 function. The mark stack keeps bookmarks to
locations in the argument
 stack usable by each function. For instance, when dealing with a tied

variable, (internally, something with "P" magic) Perl has to call
 methods for accesses to the tied
variables. However, we need to separate
 the arguments exposed to the method to the argument
exposed to the
 original function - the store or fetch or whatever it may be. Here's how
 the tied
push is implemented; see av_push in av.c:

 1	 PUSHMARK(SP);
 2	 EXTEND(SP,2);
 3	 PUSHs(SvTIED_obj((SV*)av, mg));
 4	 PUSHs(val);
 5	 PUTBACK;
 6	 ENTER;
 7	 call_method("PUSH", G_SCALAR|G_DISCARD);
 8	 LEAVE;
 9	 POPSTACK;

The lines which concern the mark stack are the first, fifth and last
 lines: they save away, restore
and remove the current position of the
 argument stack.

Let's examine the whole implementation, for practice:

 1	 PUSHMARK(SP);

Push the current state of the stack pointer onto the mark stack. This is
 so that when we've
finished adding items to the argument stack, Perl
 knows how many things we've added recently.

 2	 EXTEND(SP,2);
 3	 PUSHs(SvTIED_obj((SV*)av, mg));
 4	 PUSHs(val);

We're going to add two more items onto the argument stack: when you have
 a tied array, the
PUSH subroutine receives the object and the value
 to be pushed, and that's exactly what we
have here - the tied object,
 retrieved with SvTIED_obj, and the value, the SV val.

 5	 PUTBACK;

Next we tell Perl to make the change to the global stack pointer: dSP
 only gave us a local copy,
not a reference to the global.

 6	 ENTER;
 7	 call_method("PUSH", G_SCALAR|G_DISCARD);
 8	 LEAVE;

ENTER and LEAVE localise a block of code - they make sure that all
 variables are tidied up,
everything that has been localised gets
 its previous value returned, and so on. Think of them as
the { and } of a Perl block.

To actually do the magic method call, we have to call a subroutine in
 Perl space: call_method
takes care of that, and it's described in perlcall. We call the PUSH method in scalar context, and
we're
 going to discard its return value.

 9	 POPSTACK;

Perl version 5.8.8 documentation - perlhack

Page 20http://perldoc.perl.org

Finally, we remove the value we placed on the mark stack, since we
 don't need it any more.

Save stack

C doesn't have a concept of local scope, so perl provides one. We've
 seen that ENTER and
LEAVE are used as scoping braces; the save
 stack implements the C equivalent of, for example:

 {
 local $foo = 42;
 ...
 }

See "Localising Changes" in perlguts for how to use the save stack.

Millions of Macros
One thing you'll notice about the Perl source is that it's full of
 macros. Some have called the pervasive
use of macros the hardest thing
 to understand, others find it adds to clarity. Let's take an example,
 the
code which implements the addition operator:

 1 PP(pp_add)
 2 {
 3 dSP; dATARGET; tryAMAGICbin(add,opASSIGN);
 4 {
 5 dPOPTOPnnrl_ul;
 6 SETn(left + right);
 7 RETURN;
 8 }
 9 }

Every line here (apart from the braces, of course) contains a macro. The
 first line sets up the function
declaration as Perl expects for PP code;
 line 3 sets up variable declarations for the argument stack
and the
 target, the return value of the operation. Finally, it tries to see if
 the addition operation is
overloaded; if so, the appropriate subroutine
 is called.

Line 5 is another variable declaration - all variable declarations start
 with d - which pops from the top
of the argument stack two NVs (hence nn) and puts them into the variables right and left, hence
the rl. These are the two operands to the addition operator. Next, we
 call SETn to set the NV of the
return value to the result of adding
 the two values. This done, we return - the RETURN macro makes
sure
 that our return value is properly handled, and we pass the next operator
 to run back to the main
run loop.

Most of these macros are explained in perlapi, and some of the more
 important ones are explained in
perlxs as well. Pay special attention
 to "Background and PERL_IMPLICIT_CONTEXT" in perlguts for
information on
 the [pad]THX_? macros.

The .i Targets
You can expand the macros in a foo.c file by saying

 make foo.i

which will expand the macros using cpp. Don't be scared by the results.

Poking at Perl
To really poke around with Perl, you'll probably want to build Perl for
 debugging, like this:

 ./Configure -d -D optimize=-g
 make

Perl version 5.8.8 documentation - perlhack

Page 21http://perldoc.perl.org

-g is a flag to the C compiler to have it produce debugging
 information which will allow us to step
through a running program. Configure will also turn on the DEBUGGING compilation symbol which

enables all the internal debugging code in Perl. There are a whole bunch
 of things you can debug with
this: perlrun lists them all, and the
 best way to find out about them is to play about with them. The
most
 useful options are probably

 l Context (loop) stack processing
 t Trace execution
 o Method and overloading resolution
 c String/numeric conversions

Some of the functionality of the debugging code can be achieved using XS
 modules.

 -Dr => use re 'debug'
 -Dx => use O 'Debug'

Using a source-level debugger
If the debugging output of -D doesn't help you, it's time to step
 through perl's execution with a
source-level debugger.

We'll use gdb for our examples here; the principles will apply to any
 debugger, but check the
manual of the one you're using.

To fire up the debugger, type

 gdb ./perl

You'll want to do that in your Perl source tree so the debugger can read
 the source code. You should
see the copyright message, followed by the
 prompt.

 (gdb)

help will get you into the documentation, but here are the most
 useful commands:

run [args]

Run the program with the given arguments.

break function_name

break source.c:xxx

Tells the debugger that we'll want to pause execution when we reach
 either the named function
(but see "Internal Functions" in perlguts!) or the given
 line in the named source file.

step

Steps through the program a line at a time.

next

Steps through the program a line at a time, without descending into
 functions.

continue

Run until the next breakpoint.

finish

Run until the end of the current function, then stop again.

'enter'

Just pressing Enter will do the most recent operation again - it's a
 blessing when stepping

Perl version 5.8.8 documentation - perlhack

Page 22http://perldoc.perl.org

through miles of source code.

print

Execute the given C code and print its results. WARNING: Perl makes
 heavy use of macros,
and gdb does not necessarily support macros
 (see later gdb macro support). You'll have to
substitute them
 yourself, or to invoke cpp on the source code files
 (see The .i Targets)
 So, for
instance, you can't say

 print SvPV_nolen(sv)

but you have to say

 print Perl_sv_2pv_nolen(sv)

You may find it helpful to have a "macro dictionary", which you can
 produce by saying cpp -dM
perl.c | sort. Even then, cpp won't
 recursively apply those macros for you.

gdb macro support
Recent versions of gdb have fairly good macro support, but
 in order to use it you'll need to compile
perl with macro definitions
 included in the debugging information. Using gcc version 3.1, this
 means
configuring with -Doptimize=-g3. Other compilers might use a
 different switch (if they support
debugging macros at all).

Dumping Perl Data Structures
One way to get around this macro hell is to use the dumping functions in dump.c; these work a little
like an internal Devel::Peek, but they also cover OPs and other structures
 that you can't get at from
Perl. Let's take an example. We'll use the $a = $b + $c we used before, but give it a bit of context:
$b = "6XXXX"; $c = 2.3;. Where's a good place to stop and poke around?

What about pp_add, the function we examined earlier to implement the + operator:

 (gdb) break Perl_pp_add
 Breakpoint 1 at 0x46249f: file pp_hot.c, line 309.

Notice we use Perl_pp_add and not pp_add - see "Internal Functions" in perlguts.
 With the
breakpoint in place, we can run our program:

 (gdb) run -e '$b = "6XXXX"; $c = 2.3; $a = $b + $c'

Lots of junk will go past as gdb reads in the relevant source files and
 libraries, and then:

 Breakpoint 1, Perl_pp_add () at pp_hot.c:309
 309 dSP; dATARGET; tryAMAGICbin(add,opASSIGN);
 (gdb) step
 311 dPOPTOPnnrl_ul;
 (gdb)

We looked at this bit of code before, and we said that dPOPTOPnnrl_ul
 arranges for two NVs to be
placed into left and right - let's
 slightly expand it:

 #define dPOPTOPnnrl_ul NV right = POPn; \
 SV *leftsv = TOPs; \
 NV left = USE_LEFT(leftsv) ? SvNV(leftsv) : 0.0

POPn takes the SV from the top of the stack and obtains its NV either
 directly (if SvNOK is set) or by
calling the sv_2nv function. TOPs takes the next SV from the top of the stack - yes, POPn uses TOPs
- but doesn't remove it. We then use SvNV to get the NV from leftsv in the same way as before -

Perl version 5.8.8 documentation - perlhack

Page 23http://perldoc.perl.org

yes, POPn uses SvNV.

Since we don't have an NV for $b, we'll have to use sv_2nv to
 convert it. If we step again, we'll find
ourselves there:

 Perl_sv_2nv (sv=0xa0675d0) at sv.c:1669
 1669 if (!sv)
 (gdb)

We can now use Perl_sv_dump to investigate the SV:

 SV = PV(0xa057cc0) at 0xa0675d0
 REFCNT = 1
 FLAGS = (POK,pPOK)
 PV = 0xa06a510 "6XXXX"\0
 CUR = 5
 LEN = 6
 $1 = void

We know we're going to get 6 from this, so let's finish the
 subroutine:

 (gdb) finish
 Run till exit from #0 Perl_sv_2nv (sv=0xa0675d0) at sv.c:1671
 0x462669 in Perl_pp_add () at pp_hot.c:311
 311 dPOPTOPnnrl_ul;

We can also dump out this op: the current op is always stored in PL_op, and we can dump it with
Perl_op_dump. This'll give us
 similar output to B::Debug.

 {
 13 TYPE = add ===> 14
 TARG = 1
 FLAGS = (SCALAR,KIDS)
 {
 TYPE = null ===> (12)
 (was rv2sv)
 FLAGS = (SCALAR,KIDS)
 {
 11 TYPE = gvsv ===> 12
 FLAGS = (SCALAR)
 GV = main::b
 }
 }

finish this later

Patching
All right, we've now had a look at how to navigate the Perl sources and
 some things you'll need to
know when fiddling with them. Let's now get
 on and create a simple patch. Here's something Larry
suggested: if a U is the first active format during a pack, (for example, pack "U3C8", @stuff)
then the resulting string should be treated as
 UTF-8 encoded.

How do we prepare to fix this up? First we locate the code in question -
 the pack happens at runtime,
so it's going to be in one of the pp
 files. Sure enough, pp_pack is in pp.c. Since we're going to be

altering this file, let's copy it to pp.c~.

[Well, it was in pp.c when this tutorial was written. It has now been
 split off with pp_unpack to its own

Perl version 5.8.8 documentation - perlhack

Page 24http://perldoc.perl.org

file, pp_pack.c]

Now let's look over pp_pack: we take a pattern into pat, and then
 loop over the pattern, taking each
format character in turn into datum_type. Then for each possible format character, we swallow up

the other arguments in the pattern (a field width, an asterisk, and so
 on) and convert the next chunk
input into the specified format, adding
 it onto the output SV cat.

How do we know if the U is the first format in the pat? Well, if
 we have a pointer to the start of pat
then, if we see a U we can
 test whether we're still at the start of the string. So, here's where pat is set
up:

 STRLEN fromlen;
 register char *pat = SvPVx(*++MARK, fromlen);
 register char *patend = pat + fromlen;
 register I32 len;
 I32 datumtype;
 SV *fromstr;

We'll have another string pointer in there:

 STRLEN fromlen;
 register char *pat = SvPVx(*++MARK, fromlen);
 register char *patend = pat + fromlen;
 + char *patcopy;
 register I32 len;
 I32 datumtype;
 SV *fromstr;

And just before we start the loop, we'll set patcopy to be the start
 of pat:

 items = SP - MARK;
 MARK++;
 sv_setpvn(cat, "", 0);
 + patcopy = pat;
 while (pat < patend) {

Now if we see a U which was at the start of the string, we turn on
 the UTF8 flag for the output SV, cat
:

 + if (datumtype == 'U' && pat==patcopy+1)
 + SvUTF8_on(cat);
 if (datumtype == '#') {
 while (pat < patend && *pat != '\n')
 pat++;

Remember that it has to be patcopy+1 because the first character of
 the string is the U which has
been swallowed into datumtype!

Oops, we forgot one thing: what if there are spaces at the start of the
 pattern? pack(" U*",
@stuff) will have U as the first active
 character, even though it's not the first thing in the pattern. In
this
 case, we have to advance patcopy along with pat when we see spaces:

 if (isSPACE(datumtype))
 continue;

needs to become

Perl version 5.8.8 documentation - perlhack

Page 25http://perldoc.perl.org

 if (isSPACE(datumtype)) {
 patcopy++;
 continue;
 }

OK. That's the C part done. Now we must do two additional things before
 this patch is ready to go:
we've changed the behaviour of Perl, and so
 we must document that change. We must also provide
some more regression
 tests to make sure our patch works and doesn't create a bug somewhere
 else
along the line.

The regression tests for each operator live in t/op/, and so we
 make a copy of t/op/pack.t to
t/op/pack.t~. Now we can add our
 tests to the end. First, we'll test that the U does indeed create

Unicode strings.

t/op/pack.t has a sensible ok() function, but if it didn't we could
 use the one from t/test.pl.

 require './test.pl';
 plan(tests => 159);

so instead of this:

 print 'not ' unless "1.20.300.4000" eq sprintf "%vd",
pack("U*",1,20,300,4000);
 print "ok $test\n"; $test++;

we can write the more sensible (see Test::More for a full
 explanation of is() and other testing
functions).

 is("1.20.300.4000", sprintf "%vd", pack("U*",1,20,300,4000),
 "U* produces unicode");

Now we'll test that we got that space-at-the-beginning business right:

 is("1.20.300.4000", sprintf "%vd", pack(" U*",1,20,300,4000),
 " with spaces at the beginning");

And finally we'll test that we don't make Unicode strings if U is not
 the first active format:

 isnt(v1.20.300.4000, sprintf "%vd", pack("C0U*",1,20,300,4000),
 "U* not first isn't unicode");

Mustn't forget to change the number of tests which appears at the top,
 or else the automated tester
will get confused. This will either look
 like this:

 print "1..156\n";

or this:

 plan(tests => 156);

We now compile up Perl, and run it through the test suite. Our new
 tests pass, hooray!

Finally, the documentation. The job is never done until the paperwork is
 over, so let's describe the
change we've just made. The relevant place
 is pod/perlfunc.pod; again, we make a copy, and then
we'll insert
 this text in the description of pack:

 =item *

Perl version 5.8.8 documentation - perlhack

Page 26http://perldoc.perl.org

 If the pattern begins with a C<U>, the resulting string will be treated
 as UTF-8-encoded Unicode. You can force UTF-8 encoding on in a string
 with an initial C<U0>, and the bytes that follow will be interpreted as
 Unicode characters. If you don't want this to happen, you can begin your
 pattern with C<C0> (or anything else) to force Perl not to UTF-8 encode
your
 string, and then follow this with a C<U*> somewhere in your pattern.

All done. Now let's create the patch. Porting/patching.pod tells us
 that if we're making major changes,
we should copy the entire directory
 to somewhere safe before we begin fiddling, and then do

 diff -ruN old new > patch

However, we know which files we've changed, and we can simply do this:

 diff -u pp.c~ pp.c > patch
 diff -u t/op/pack.t~ t/op/pack.t >> patch
 diff -u pod/perlfunc.pod~ pod/perlfunc.pod >> patch

We end up with a patch looking a little like this:

 --- pp.c~ Fri Jun 02 04:34:10 2000
 +++ pp.c Fri Jun 16 11:37:25 2000
 @@ -4375,6 +4375,7 @@
 register I32 items;
 STRLEN fromlen;
 register char *pat = SvPVx(*++MARK, fromlen);
 + char *patcopy;
 register char *patend = pat + fromlen;
 register I32 len;
 I32 datumtype;
 @@ -4405,6 +4406,7 @@
 ...

And finally, we submit it, with our rationale, to perl5-porters. Job
 done!

Patching a core module
This works just like patching anything else, with an extra
 consideration. Many core modules also live
on CPAN. If this is so,
 patch the CPAN version instead of the core and send the patch off to
 the
module maintainer (with a copy to p5p). This will help the module
 maintainer keep the CPAN version
in sync with the core version without
 constantly scanning p5p.

The list of maintainers of core modules is usefully documented in Porting/Maintainers.pl.

Adding a new function to the core
If, as part of a patch to fix a bug, or just because you have an
 especially good idea, you decide to add
a new function to the core,
 discuss your ideas on p5p well before you start work. It may be that

someone else has already attempted to do what you are considering and
 can give lots of good advice
or even provide you with bits of code
 that they already started (but never finished).

You have to follow all of the advice given above for patching. It is
 extremely important to test any
addition thoroughly and add new tests
 to explore all boundary conditions that your new function is
expected
 to handle. If your new function is used only by one module (e.g. toke),
 then it should
probably be named S_your_function (for static); on the
 other hand, if you expect it to accessible from
other functions in
 Perl, you should name it Perl_your_function. See "Internal Functions" in perlguts
 for
more details.

Perl version 5.8.8 documentation - perlhack

Page 27http://perldoc.perl.org

The location of any new code is also an important consideration. Don't
 just create a new top level .c
file and put your code there; you would
 have to make changes to Configure (so the Makefile is
created properly),
 as well as possibly lots of include files. This is strictly pumpking
 business.

It is better to add your function to one of the existing top level
 source code files, but your choice is
complicated by the nature of
 the Perl distribution. Only the files that are marked as compiled
 static are
located in the perl executable. Everything else is located
 in the shared library (or DLL if you are
running under WIN32). So,
 for example, if a function was only used by functions located in
 toke.c,
then your code can go in toke.c. If, however, you want to call
 the function from universal.c, then you
should put your code in another
 location, for example util.c.

In addition to writing your c-code, you will need to create an
 appropriate entry in embed.pl describing
your function, then run
 'make regen_headers' to create the entries in the numerous header
 files that
perl needs to compile correctly. See "Internal Functions" in perlguts
 for information on the various
options that you can set in embed.pl.
 You will forget to do this a few (or many) times and you will get

warnings during the compilation phase. Make sure that you mention
 this when you post your patch to
P5P; the pumpking needs to know this.

When you write your new code, please be conscious of existing code
 conventions used in the perl
source files. See perlstyle for
 details. Although most of the guidelines discussed seem to focus on

Perl code, rather than c, they all apply (except when they don't ;).
 See also Porting/patching.pod file in
the Perl source distribution
 for lots of details about both formatting and submitting patches of
 your
changes.

Lastly, TEST TEST TEST TEST TEST any code before posting to p5p.
 Test on as many platforms as
you can find. Test as many perl
 Configure options as you can (e.g. MULTIPLICITY). If you have

profiling or memory tools, see EXTERNAL TOOLS FOR DEBUGGING PERL
 below for how to use
them to further test your code. Remember that
 most of the people on P5P are doing this on their own
time and
 don't have the time to debug your code.

Writing a test
Every module and built-in function has an associated test file (or
 should...). If you add or change
functionality, you have to write a
 test. If you fix a bug, you have to write a test so that bug never

comes back. If you alter the docs, it would be nice to test what the
 new documentation says.

In short, if you submit a patch you probably also have to patch the
 tests.

For modules, the test file is right next to the module itself. lib/strict.t tests lib/strict.pm. This is a recent
innovation,
 so there are some snags (and it would be wonderful for you to brush
 them out), but it
basically works that way. Everything else lives in t/.

t/base/

Testing of the absolute basic functionality of Perl. Things like if, basic file reads and writes,
simple regexes, etc. These are
 run first in the test suite and if any of them fail, something is
really broken.

t/cmd/

These test the basic control structures, if/else, while,
 subroutines, etc.

t/comp/

Tests basic issues of how Perl parses and compiles itself.

t/io/

Tests for built-in IO functions, including command line arguments.

t/lib/

The old home for the module tests, you shouldn't put anything new in
 here. There are still some
bits and pieces hanging around in here
 that need to be moved. Perhaps you could move them?

Perl version 5.8.8 documentation - perlhack

Page 28http://perldoc.perl.org

Thanks!t/op/

Tests for perl's built in functions that don't fit into any of the
 other directories.

t/pod/

Tests for POD directives. There are still some tests for the Pod
 modules hanging around in here
that need to be moved out into lib/.

t/run/

Testing features of how perl actually runs, including exit codes and
 handling of PERL*
environment variables.

t/uni/

Tests for the core support of Unicode.

t/win32/

Windows-specific tests.

t/x2p

A test suite for the s2p converter.

The core uses the same testing style as the rest of Perl, a simple
 "ok/not ok" run through
Test::Harness, but there are a few special
 considerations.

There are three ways to write a test in the core. Test::More,
 t/test.pl and ad hoc print $test ?
"ok 42\n" : "not ok 42\n". The
 decision of which to use depends on what part of the test
suite you're
 working on. This is a measure to prevent a high-level failure (such
 as Config.pm breaking)
from causing basic functionality tests to fail.

t/base t/comp

Since we don't know if require works, or even subroutines, use ad hoc
 tests for these two.
Step carefully to avoid using the feature being
 tested.

t/cmd t/run t/io t/op

Now that basic require() and subroutines are tested, you can use the
 t/test.pl library which
emulates the important features of Test::More
 while using a minimum of core features.

You can also conditionally use certain libraries like Config, but be
 sure to skip the test
gracefully if it's not there.

t/lib ext lib

Now that the core of Perl is tested, Test::More can be used. You can
 also use the full suite of
core modules in the tests.

When you say "make test" Perl uses the t/TEST program to run the
 test suite (except under Win32
where it uses t/harness instead.) All tests are run from the t/ directory, not the directory which
contains the test. This causes some problems with the tests in lib/, so here's some opportunity for
some patching.

You must be triply conscious of cross-platform concerns. This usually
 boils down to using File::Spec
and avoiding things like fork() and system() unless absolutely necessary.

Special Make Test Targets
There are various special make targets that can be used to test Perl
 slightly differently than the
standard "test" target. Not all them
 are expected to give a 100% success rate. Many of them have
several
 aliases, and many of them are not available on certain operating
 systems.

coretest

Run perl on all core tests (t/* and lib/[a-z]* pragma tests).

Perl version 5.8.8 documentation - perlhack

Page 29http://perldoc.perl.org

(Not available on Win32)

test.deparse

Run all the tests through B::Deparse. Not all tests will succeed.

(Not available on Win32)

test.taintwarn

Run all tests with the -t command-line switch. Not all tests
 are expected to succeed (until
they're specifically fixed, of course).

(Not available on Win32)

minitest

Run miniperl on t/base, t/comp, t/cmd, t/run, t/io, t/op, and t/uni tests.

test.valgrind check.valgrind utest.valgrind ucheck.valgrind

(Only in Linux) Run all the tests using the memory leak + naughty
 memory access tool
"valgrind". The log files will be named testname.valgrind.

test.third check.third utest.third ucheck.third

(Only in Tru64) Run all the tests using the memory leak + naughty
 memory access tool "Third
Degree". The log files will be named perl.3log.testname.

test.torture torturetest

Run all the usual tests and some extra tests. As of Perl 5.8.0 the
 only extra tests are Abigail's
JAPHs, t/japh/abigail.t.

You can also run the torture test with t/harness by giving -torture argument to t/harness.

utest ucheck test.utf8 check.utf8

Run all the tests with -Mutf8. Not all tests will succeed.

(Not available on Win32)

minitest.utf16 test.utf16

Runs the tests with UTF-16 encoded scripts, encoded with different
 versions of this encoding.

make utest.utf16 runs the test suite with a combination of -utf8 and -utf16 arguments
to t/TEST.

(Not available on Win32)

test_harness

Run the test suite with the t/harness controlling program, instead of t/TEST. t/harness is more
sophisticated, and uses the Test::Harness module, thus using this test target supposes that
perl
 mostly works. The main advantage for our purposes is that it prints a
 detailed summary of
failed tests at the end. Also, unlike t/TEST, it
 doesn't redirect stderr to stdout.

Note that under Win32 t/harness is always used instead of t/TEST, so
 there is no special
"test_harness" target.

Under Win32's "test" target you may use the TEST_SWITCHES and TEST_FILES

environment variables to control the behaviour of t/harness. This means
 you can say

 nmake test TEST_FILES="op/*.t"
 nmake test TEST_SWITCHES="-torture" TEST_FILES="op/*.t"

test-notty test_notty

Sets PERL_SKIP_TTY_TEST to true before running normal test.

Perl version 5.8.8 documentation - perlhack

Page 30http://perldoc.perl.org

Running tests by hand
You can run part of the test suite by hand by using one the following
 commands from the t/ directory :

 ./perl -I../lib TEST list-of-.t-files

or

 ./perl -I../lib harness list-of-.t-files

(if you don't specify test scripts, the whole test suite will be run.)

Using t/harness for testing

If you use harness for testing you have several command line options
 available to you. The
arguments are as follows, and are in the order
 that they must appear if used together.

 harness -v -torture -re=pattern LIST OF FILES TO TEST
 harness -v -torture -re LIST OF PATTERNS TO MATCH

If LIST OF FILES TO TEST is omitted the file list is obtained from
 the manifest. The file list may
include shell wildcards which will be expanded out.

-v

Run the tests under verbose mode so you can see what tests were run, and debug outbut.

-torture

Run the torture tests as well as the normal set.

-re=PATTERN

Filter the file list so that all the test files run match PATTERN.
 Note that this form is distinct
from the -re LIST OF PATTERNS form below
 in that it allows the file list to be provided as
well.

-re LIST OF PATTERNS

Filter the file list so that all the test files run match /(LIST|OF|PATTERNS)/. Note that with this
form the patterns
 are joined by '|' and you cannot supply a list of files, instead
 the test files are
obtained from the MANIFEST.

You can run an individual test by a command similar to

 ./perl -I../lib patho/to/foo.t

except that the harnesses set up some environment variables that may
 affect the execution of the test
:

PERL_CORE=1

indicates that we're running this test part of the perl core test suite.
 This is useful for modules
that have a dual life on CPAN.

PERL_DESTRUCT_LEVEL=2

is set to 2 if it isn't set already (see PERL_DESTRUCT_LEVEL)

PERL

(used only by t/TEST) if set, overrides the path to the perl executable
 that should be used to
run the tests (the default being ./perl).

PERL_SKIP_TTY_TEST

Perl version 5.8.8 documentation - perlhack

Page 31http://perldoc.perl.org

if set, tells to skip the tests that need a terminal. It's actually set
 automatically by the Makefile,
but can also be forced artificially by
 running 'make test_notty'.

EXTERNAL TOOLS FOR DEBUGGING PERL
Sometimes it helps to use external tools while debugging and
 testing Perl. This section tries to guide
you through using
 some common testing and debugging tools with Perl. This is
 meant as a guide to
interfacing these tools with Perl, not
 as any kind of guide to the use of the tools themselves.

NOTE 1: Running under memory debuggers such as Purify, valgrind, or
 Third Degree greatly slows
down the execution: seconds become minutes,
 minutes become hours. For example as of Perl 5.8.1,
the
 ext/Encode/t/Unicode.t takes extraordinarily long to complete under
 e.g. Purify, Third Degree, and
valgrind. Under valgrind it takes more
 than six hours, even on a snappy computer-- the said test must
be
 doing something that is quite unfriendly for memory debuggers. If you
 don't feel like waiting, that
you can simply kill away the perl
 process.

NOTE 2: To minimize the number of memory leak false alarms (see PERL_DESTRUCT_LEVEL for
more information), you have to have
 environment variable PERL_DESTRUCT_LEVEL set to 2. The
TEST
 and harness scripts do that automatically. But if you are running
 some of the tests manually--
for csh-like shells:

 setenv PERL_DESTRUCT_LEVEL 2

and for Bourne-type shells:

 PERL_DESTRUCT_LEVEL=2
 export PERL_DESTRUCT_LEVEL

or in UNIXy environments you can also use the env command:

 env PERL_DESTRUCT_LEVEL=2 valgrind ./perl -Ilib ...

NOTE 3: There are known memory leaks when there are compile-time
 errors within eval or require,
seeing S_doeval in the call stack
 is a good sign of these. Fixing these leaks is non-trivial,

unfortunately, but they must be fixed eventually.

Rational Software's Purify
Purify is a commercial tool that is helpful in identifying
 memory overruns, wild pointers, memory leaks
and other such
 badness. Perl must be compiled in a specific way for
 optimal testing with Purify. Purify
is available under
 Windows NT, Solaris, HP-UX, SGI, and Siemens Unix.

Purify on Unix
On Unix, Purify creates a new Perl binary. To get the most
 benefit out of Purify, you should create the
perl to Purify
 using:

 sh Configure -Accflags=-DPURIFY -Doptimize='-g' \
 -Uusemymalloc -Dusemultiplicity

where these arguments mean:

-Accflags=-DPURIFY

Disables Perl's arena memory allocation functions, as well as
 forcing use of memory allocation
functions derived from the
 system malloc.

-Doptimize='-g'

Adds debugging information so that you see the exact source
 statements where the problem
occurs. Without this flag, all
 you will see is the source filename of where the error occurred.

Perl version 5.8.8 documentation - perlhack

Page 32http://perldoc.perl.org

-Uusemymalloc

Disable Perl's malloc so that Purify can more closely monitor
 allocations and leaks. Using
Perl's malloc will make Purify
 report most leaks in the "potential" leaks category.

-Dusemultiplicity

Enabling the multiplicity option allows perl to clean up
 thoroughly when the interpreter shuts
down, which reduces the
 number of bogus leak reports from Purify.

Once you've compiled a perl suitable for Purify'ing, then you
 can just:

 make pureperl

which creates a binary named 'pureperl' that has been Purify'ed.
 This binary is used in place of the
standard 'perl' binary
 when you want to debug Perl memory problems.

As an example, to show any memory leaks produced during the
 standard Perl testset you would
create and run the Purify'ed
 perl as:

 make pureperl
 cd t
 ../pureperl -I../lib harness

which would run Perl on test.pl and report any memory problems.

Purify outputs messages in "Viewer" windows by default. If
 you don't have a windowing environment
or if you simply
 want the Purify output to unobtrusively go to a log file
 instead of to the interactive
window, use these following
 options to output to the log file "perl.log":

 setenv PURIFYOPTIONS "-chain-length=25 -windows=no \
 -log-file=perl.log -append-logfile=yes"

If you plan to use the "Viewer" windows, then you only need this option:

 setenv PURIFYOPTIONS "-chain-length=25"

In Bourne-type shells:

 PURIFYOPTIONS="..."
 export PURIFYOPTIONS

or if you have the "env" utility:

 env PURIFYOPTIONS="..." ../pureperl ...

Purify on NT
Purify on Windows NT instruments the Perl binary 'perl.exe'
 on the fly. There are several options in
the makefile you
 should change to get the most use out of Purify:

DEFINES

You should add -DPURIFY to the DEFINES line so the DEFINES
 line looks something like:

 DEFINES = -DWIN32 -D_CONSOLE -DNO_STRICT $(CRYPT_FLAG) -DPURIFY=1

to disable Perl's arena memory allocation functions, as
 well as to force use of memory
allocation functions derived
 from the system malloc.

USE_MULTI = define

Perl version 5.8.8 documentation - perlhack

Page 33http://perldoc.perl.org

Enabling the multiplicity option allows perl to clean up
 thoroughly when the interpreter shuts
down, which reduces the
 number of bogus leak reports from Purify.

#PERL_MALLOC = define

Disable Perl's malloc so that Purify can more closely monitor
 allocations and leaks. Using
Perl's malloc will make Purify
 report most leaks in the "potential" leaks category.

CFG = Debug

Adds debugging information so that you see the exact source
 statements where the problem
occurs. Without this flag, all
 you will see is the source filename of where the error occurred.

As an example, to show any memory leaks produced during the
 standard Perl testset you would
create and run Purify as:

 cd win32
 make
 cd ../t
 purify ../perl -I../lib harness

which would instrument Perl in memory, run Perl on test.pl,
 then finally report any memory problems.

valgrind
The excellent valgrind tool can be used to find out both memory leaks
 and illegal memory accesses.
As of August 2003 it unfortunately works
 only on x86 (ELF) Linux. The special "test.valgrind" target
can be used
 to run the tests under valgrind. Found errors and memory leaks are
 logged in files
named test.valgrind.

As system libraries (most notably glibc) are also triggering errors,
 valgrind allows to suppress such
errors using suppression files. The
 default suppression file that comes with valgrind already catches a
lot
 of them. Some additional suppressions are defined in t/perl.supp.

To get valgrind and for more information see

 http://developer.kde.org/~sewardj/

Compaq's/Digital's/HP's Third Degree
Third Degree is a tool for memory leak detection and memory access checks.
 It is one of the many
tools in the ATOM toolkit. The toolkit is only
 available on Tru64 (formerly known as Digital UNIX
formerly known as
 DEC OSF/1).

When building Perl, you must first run Configure with -Doptimize=-g
 and -Uusemymalloc flags, after
that you can use the make targets
 "perl.third" and "test.third". (What is required is that Perl must be

compiled using the -g flag, you may need to re-Configure.)

The short story is that with "atom" you can instrument the Perl
 executable to create a new executable
called perl.third. When the
 instrumented executable is run, it creates a log of dubious memory
 traffic
in file called perl.3log. See the manual pages of atom and
 third for more information. The most
extensive Third Degree
 documentation is available in the Compaq "Tru64 UNIX Programmer's

Guide", chapter "Debugging Programs with Third Degree".

The "test.third" leaves a lot of files named foo_bar.3log in the t/
 subdirectory. There is a problem with
these files: Third Degree is so
 effective that it finds problems also in the system libraries.
 Therefore
you should used the Porting/thirdclean script to cleanup
 the *.3log files.

There are also leaks that for given certain definition of a leak,
 aren't. See PERL_DESTRUCT_LEVEL
for more information.

Perl version 5.8.8 documentation - perlhack

Page 34http://perldoc.perl.org

PERL_DESTRUCT_LEVEL
If you want to run any of the tests yourself manually using e.g.
 valgrind, or the pureperl or perl.third
executables, please note that
 by default perl does not explicitly cleanup all the memory it has

allocated (such as global memory arenas) but instead lets the exit()
 of the whole program "take care"
of such allocations, also known as
 "global destruction of objects".

There is a way to tell perl to do complete cleanup: set the
 environment variable
PERL_DESTRUCT_LEVEL to a non-zero value.
 The t/TEST wrapper does set this to 2, and this is
what you
 need to do too, if you don't want to see the "global leaks":
 For example, for "third-degreed"
Perl:

	 env PERL_DESTRUCT_LEVEL=2 ./perl.third -Ilib t/foo/bar.t

(Note: the mod_perl apache module uses also this environment variable
 for its own purposes and
extended its semantics. Refer to the mod_perl
 documentation for more information. Also, spawned
threads do the
 equivalent of setting this variable to the value 1.)

If, at the end of a run you get the message N scalars leaked, you can
 recompile with
-DDEBUG_LEAKING_SCALARS, which will cause
 the addresses of all those leaked SVs to be
dumped; it also converts new_SV() from a macro into a real function, so you can use your
 favourite
debugger to discover where those pesky SVs were allocated.

Profiling
Depending on your platform there are various of profiling Perl.

There are two commonly used techniques of profiling executables: statistical time-sampling and
basic-block counting.

The first method takes periodically samples of the CPU program
 counter, and since the program
counter can be correlated with the code
 generated for functions, we get a statistical view of in which

functions the program is spending its time. The caveats are that very
 small/fast functions have lower
probability of showing up in the
 profile, and that periodically interrupting the program (this is
 usually
done rather frequently, in the scale of milliseconds) imposes
 an additional overhead that may skew
the results. The first problem
 can be alleviated by running the code for longer (in general this is a

good idea for profiling), the second problem is usually kept in guard
 by the profiling tools themselves.

The second method divides up the generated code into basic blocks.
 Basic blocks are sections of
code that are entered only in the
 beginning and exited only at the end. For example, a conditional
jump
 starts a basic block. Basic block profiling usually works by instrumenting the code by adding
enter basic block #nnnn
 book-keeping code to the generated code. During the execution of the
 code
the basic block counters are then updated appropriately. The
 caveat is that the added extra code can
skew the results: again, the
 profiling tools usually try to factor their own effects out of the
 results.

Gprof Profiling
gprof is a profiling tool available in many UNIX platforms,
 it uses statistical time-sampling.

You can build a profiled version of perl called "perl.gprof" by
 invoking the make target "perl.gprof"
(What is required is that Perl
 must be compiled using the -pg flag, you may need to re-Configure).

Running the profiled version of Perl will create an output file called gmon.out is created which
contains the profiling data collected
 during the execution.

The gprof tool can then display the collected data in various ways.
 Usually gprof understands the
following options:

-a

Suppress statically defined functions from the profile.

-b

Perl version 5.8.8 documentation - perlhack

Page 35http://perldoc.perl.org

Suppress the verbose descriptions in the profile.

-e routine

Exclude the given routine and its descendants from the profile.

-f routine

Display only the given routine and its descendants in the profile.

-s

Generate a summary file called gmon.sum which then may be given
 to subsequent gprof runs
to accumulate data over several runs.

-z

Display routines that have zero usage.

For more detailed explanation of the available commands and output
 formats, see your own local
documentation of gprof.

GCC gcov Profiling
Starting from GCC 3.0 basic block profiling is officially available
 for the GNU CC.

You can build a profiled version of perl called perl.gcov by
 invoking the make target "perl.gcov" (what
is required that Perl must
 be compiled using gcc with the flags -fprofile-arcs

-ftest-coverage, you may need to re-Configure).

Running the profiled version of Perl will cause profile output to be
 generated. For each source file an
accompanying ".da" file will be
 created.

To display the results you use the "gcov" utility (which should
 be installed if you have gcc 3.0 or newer
installed). gcov is
 run on source code files, like this

 gcov sv.c

which will cause sv.c.gcov to be created. The .gcov files
 contain the source code annotated with
relative frequencies of
 execution indicated by "#" markers.

Useful options of gcov include -b which will summarise the
 basic block, branch, and function call
coverage, and -c which
 instead of relative frequencies will use the actual counts. For
 more
information on the use of gcov and basic block profiling
 with gcc, see the latest GNU CC manual, as
of GCC 3.0 see

 http://gcc.gnu.org/onlinedocs/gcc-3.0/gcc.html

and its section titled "8. gcov: a Test Coverage Program"

 http://gcc.gnu.org/onlinedocs/gcc-3.0/gcc_8.html#SEC132

Pixie Profiling
Pixie is a profiling tool available on IRIX and Tru64 (aka Digital
 UNIX aka DEC OSF/1) platforms.
Pixie does its profiling using basic-block counting.

You can build a profiled version of perl called perl.pixie by
 invoking the make target "perl.pixie" (what
is required is that Perl
 must be compiled using the -g flag, you may need to re-Configure).

In Tru64 a file called perl.Addrs will also be silently created,
 this file contains the addresses of the
basic blocks. Running the
 profiled version of Perl will create a new file called "perl.Counts"
 which
contains the counts for the basic block for that particular
 program execution.

Perl version 5.8.8 documentation - perlhack

Page 36http://perldoc.perl.org

To display the results you use the prof utility. The exact
 incantation depends on your operating
system, "prof perl.Counts" in
 IRIX, and "prof -pixie -all -L. perl" in Tru64.

In IRIX the following prof options are available:

-h

Reports the most heavily used lines in descending order of use.
 Useful for finding the hotspot
lines.

-l

Groups lines by procedure, with procedures sorted in descending order of use.
 Within a
procedure, lines are listed in source order.
 Useful for finding the hotspots of procedures.

In Tru64 the following options are available:

-p[rocedures]

Procedures sorted in descending order by the number of cycles executed
 in each procedure.
Useful for finding the hotspot procedures.
 (This is the default option.)

-h[eavy]

Lines sorted in descending order by the number of cycles executed in
 each line. Useful for
finding the hotspot lines.

-i[nvocations]

The called procedures are sorted in descending order by number of calls
 made to the
procedures. Useful for finding the most used procedures.

-l[ines]

Grouped by procedure, sorted by cycles executed per procedure.
 Useful for finding the
hotspots of procedures.

-testcoverage

The compiler emitted code for these lines, but the code was unexecuted.

-z[ero]

Unexecuted procedures.

For further information, see your system's manual pages for pixie and prof.

Miscellaneous tricks
Those debugging perl with the DDD frontend over gdb may find the
 following useful:

You can extend the data conversion shortcuts menu, so for example you
 can display an SV's
IV value with one click, without doing any typing.
 To do that simply edit ~/.ddd/init file and add
after:

 ! Display shortcuts.
 Ddd*gdbDisplayShortcuts: \
 /t () // Convert to Bin\n\
 /d () // Convert to Dec\n\
 /x () // Convert to Hex\n\
 /o () // Convert to Oct(\n\

the following two lines:

 ((XPV*) (())->sv_any)->xpv_pv // 2pvx\n\
 ((XPVIV*) (())->sv_any)->xiv_iv // 2ivx

so now you can do ivx and pvx lookups or you can plug there the
 sv_peek "conversion":

Perl version 5.8.8 documentation - perlhack

Page 37http://perldoc.perl.org

 Perl_sv_peek(my_perl, (SV*)()) // sv_peek

(The my_perl is for threaded builds.)
 Just remember that every line, but the last one, should
end with \n\

Alternatively edit the init file interactively via:
 3rd mouse button -> New Display -> Edit Menu

Note: you can define up to 20 conversion shortcuts in the gdb
 section.

If you see in a debugger a memory area mysteriously full of 0xabababab,
 you may be seeing
the effect of the Poison() macro, see perlclib.

CONCLUSION
We've had a brief look around the Perl source, an overview of the stages perl goes through when it's
running your code, and how to use a
 debugger to poke at the Perl guts. We took a very simple
problem and
 demonstrated how to solve it fully - with documentation, regression
 tests, and finally a
patch for submission to p5p. Finally, we talked
 about how to use external tools to debug and test Perl.

I'd now suggest you read over those references again, and then, as soon
 as possible, get your hands
dirty. The best way to learn is by doing,
 so:

Subscribe to perl5-porters, follow the patches and try and understand
 them; don't be afraid to
ask if there's a portion you're not clear on -
 who knows, you may unearth a bug in the patch...

Keep up to date with the bleeding edge Perl distributions and get
 familiar with the changes. Try
and get an idea of what areas people are
 working on and the changes they're making.

Do read the README associated with your operating system, e.g. README.aix
 on the IBM AIX
OS. Don't hesitate to supply patches to that README if
 you find anything missing or changed
over a new OS release.

Find an area of Perl that seems interesting to you, and see if you can
 work out how it works.
Scan through the source, and step over it in the
 debugger. Play, poke, investigate, fiddle! You'll
probably get to
 understand not just your chosen area but a much wider range of perl's
 activity as
well, and probably sooner than you'd think.

The Road goes ever on and on, down from the door where it began.

If you can do these things, you've started on the long road to Perl porting. Thanks for wanting to help
make Perl better - and happy hacking!

AUTHOR
This document was written by Nathan Torkington, and is maintained by
 the perl5-porters mailing list.

