
Perl version 5.8.8 documentation - perlmint

Page 1http://perldoc.perl.org

NAME
README.mint - Perl version 5 on Atari MiNT

DESCRIPTION
There is a binary version of perl available from the FreeMiNT project
 http://freemint.de/ You may wish
to use this instead of trying to
 compile yourself.

The following advice is from perl 5.004_02 and is probably rather
 out of date.

If you want to build perl yourself on MiNT (or maybe on an Atari without
 MiNT) you may want to
accept some advice from somebody who already did it...

There was a perl port for Atari ST done by ++jrb bammi@cadence.com.
 This port tried very hard to
build on non-MiNT-systems. For the
 sake of efficiency I've left this way. Yet, I haven't removed
bammi's
 patches but left them intact. Unfortunately some of the files that
 bammi contributed to the
perl distribution seem to have vanished?

So, how can you distinguish my patches from bammi's patches? All of
 bammi's stuff is embedded in
"#ifdef atarist" preprocessor macros.
 My MiNT port uses "#ifdef __MINT__" instead (and
unconditionally
 undefines "atarist". If you want to continue on bammi's port, all you have to do is to
swap the "-D" and "-U" switches for "__MINT__" and "atarist" in the variable ccflags.

However, I think that my version will still run on non-MiNT-systems
 provided that the user has a
Eunuchs-like environment (i.e. the
 standard envariables like $PATH, $HOME, ... are set, there is a

POSIX compliant shell in /bin/sh, and...)

Known problems with Perl on MiNT
The problems you may encounter when building perl on your machine
 are most probably due to
deficiencies in MiNT resp. the Atari
 platform in general.

First of all, if you have less than 8 MB of RAM you shouldn't
 even try to build Perl yourself. Better grab
a binary pre-compiled
 version somewhere. Even if you have more memory you should take
 some
care. Try to run in a fresh environment (without memory
 fragmented too much) with as few daemons,
accessories, xcontrol
 modules etc. as possible. If you run some AES you should consider to start a
console based environment instead.

A problem has been reported with sed. Sed is used to create
 some configuration files based on the
answers you have given
 to the Configure script. Unfortunately the Perl Configure script
 shows sed on
MiNT its limits. I have sed 2.05 with a stacksize
 of 64k and I have encountered no problems. If sed
crashes
 during your configuration process you should first try to
 augment sed's stacksize:

	 fixstk 64k /usr/bin/sed

(or similar). If it still doesn't help you may have a look
 which other versions of sed are installed on your
system.
 If you have a KGMD 1.0 installation you will find three
 in /usr/bin. Have a look there.

Perl has some "mammut" C files. If gcc reports "internal
 compiler error: program cc1 got fatal signal
10" this is very
 likely due to a stack overflow in program cc1. Find cc1 and fix its stack. I have made
good experiences with

	 fixstk 2 cc1

This doesn't establish a stack of 2 Bytes only as you might
 think. It really reserves one half of the
available memory
 for cc1's stack. A setting of 1 would reserve the entire
 memory for cc1, 3 would
reserve three fourths. You will have
 to find out the value that suits to your system yourself.

To find out the location of the program "cc1" simply type
 `gcc --print-prog-name cc1' at your shell
prompt.

Perl version 5.8.8 documentation - perlmint

Page 2http://perldoc.perl.org

Now run make (maybe "make -k"). If you get a fatal signal 10 increase cc1's stacksize, if you run out
of memory you should either decrease the stacksize or follow some more hints:

Perl's building process is very handy on machines with a lot
 of virtual memory but may result in a
disaster if you are short
 of memory. If gcc fails to compile many source files you should
 reduce the
optimization. Grep for "optimize" in the file
 config.sh and change the flags.

If only several huge files cause problems (actually it is not a
 matter of the file size resp. the amount of
code but depends on
 the size of the individual functions) it is useful to bypass
 the make program and
compile these files directly from the
 command line. For example if you got something like the
 following
from make:

	 CCCMD = gcc -DPERL_CORE
	 ...
	 ...: virtual memory exhausted

you should hack into the shell:

	 gcc -DPERL_CORE ... toke.c

Please note that you have to add the name of the source file
 (here toke.c) at the end.

If none of this helps, you're helpless. Wait for a binary
 release. If you have succeeded you may
encounter another problem
 at the linking process. If gcc complains that it can't find
 some libraries
within the perl distribution you probably have
 an old linker. If it complains for example about "file not

found for xxx.olb" you should cd into the directory in
 question and

	 ln -s libxxx.a xxx.olb

This will fix the problem.

This version (5.00402) of perl has passed most of the tests on my system:

 Failed Test Status Wstat Total Fail Failed List of failed

 io/pipe.t 10 2 20.00% 7, 9
 io/tell.t 13 1 7.69% 12
 lib/complex.t 762 13 1.71% 84-85, 248-251, 257,
272-273,
 371, 380, 419-420
 lib/io_pipe.t 10 1 10.00% 9
 lib/io_tell.t 13 1 7.69% 12
 op/magic.t 30 2 6.67% 29-30
 Failed 6/152 test scripts, 96.05% okay. 20/4359 subtests failed, 99.54%
okay.

Pipes always cause problems with MiNT, it's actually a surprise that
 most of the tests did work. I've
got no idea why the "tell" test failed,
 this shouldn't mean too big a problem however.

Most of the failures of lib/complex seem to be harmless, actually errors
 far right to the decimal point...
Two failures seem to be serious:
 The sign of the results is reversed. I would say that this is due
 to
minor bugs in the portable math lib that I compiled perl with.

I haven't bothered very much to find the reason for the failures
 with op/magic.t and op/stat.t. Maybe
you'll find it out.

Perl version 5.8.8 documentation - perlmint

Page 3http://perldoc.perl.org

##

Another possible problem may arise from the implementation of the "pwd" command. It happened to
add a carriage return and newline to its output no matter what the setting of $UNIXMODE is. This is
quite annoying since many
 library modules for perl take the output of pwd, chop off the
 trailing newline
character and then expect to see a valid path in
 that. But the carriage return (last but second
character!) isn't
 chopped off. You can either try to patch all library modules (at
 the price of
performance for the extra transformation) or you can
 use my version of pwd that doesn't suffer from
this deficiency.

The fixed implementation is in the mint subdirectory. Running
 "Configure" will attempt to build and
install it if necessary
 (hints/mint.sh will do this work) but you can build and install it
 explicitly by:

	 cd mint
	 make install

This is the fastest solution.

Just in case you want to go the hard way: perl won't even build with a
 broken pwd! You will have to fix
the library modules
 (ext/POSIX/POSIX.pm, lib/Cwd.pm, lib/pwd.pl) at last after building
 miniperl.

A major nuisance of current MiNTLib versions is the implementation
 of system() which is far from
being POSIX compliant. A real system()
 should fork and then exec /bin/sh with its argument as a
command
 line to the shell. The MiNTLib system() however doesn't expect
 that every user has a
POSIX shell in /bin/sh. It tries to work
 around the problem by forking and exec'ing the first token in its
argument
 string. To get a little bit of compliance to POSIX system() it
 tries to handle at least
redirection ("<" or ">") on its own behalf.

This isn't a good idea since many programs expect that they can
 pass a command line to system()
that exploits all features of a
 POSIX shell. If you use the MiNTLib version of system() with
 perl the
Perl function system() will suffer from the same deficiencies.

You will find a fixed version of system() in the mint subdirectory.
 You can easily insert this version into
your system libc:

	 cd mint
	 make system.o
	 ar r /usr/lib/libc.a
	 ranlib /usr/lib/libc.a

If you are suspicious you should either back up your libc before
 or extract the original system.o from
your libc with "ar x /usr/lib/libc.a system.o". You can then backup the system.o
 module somewhere
before you succeed.

Anything missing? Yep, I've almost forgotten... No file in this distribution without a fine saying. Take
this one:

	 "From a thief you should learn: (1) to work at night;
	 (2) if one cannot gain what one wants in one night to
	 try again the next night; (3) to love one's coworkers
	 just as thieves love each other; (4) to be willing to
	 risk one's life even for a little thing; (5) not to
	 attach too much value to things even though one has
	 risked one's life for them - just as a thief will resell
	 a stolen article for a fraction of its real value;
	 (6) to withstand all kinds of beatings and tortures
	 but to remain what you are; and (7) to believe your
	 work is worthwhile and not be willing to change it."

Perl version 5.8.8 documentation - perlmint

Page 4http://perldoc.perl.org

			 -- Rabbi Dov Baer, Maggid of Mezeritch

OK, this was my motto while working on Perl for MiNT, especially rule (1)...

Have fun with Perl!

AUTHOR
Guido Flohr

	 mailto:guido@FreeMiNT.de

