
Perl version 5.8.8 documentation - perlothrtut

Page 1http://perldoc.perl.org

NAME
perlothrtut - old tutorial on threads in Perl

DESCRIPTION
WARNING:
 This tutorial describes the old-style thread model that was introduced in
 release 5.005.
This model is now deprecated, and will be removed, probably
 in version 5.10. The interfaces
described here were considered
 experimental, and are likely to be buggy.

For information about the new interpreter threads ("ithreads") model, see
 the perlthrtut tutorial, and
the threads and threads::shared
 modules.

You are strongly encouraged to migrate any existing threads code to the
 new model as soon as
possible.

What Is A Thread Anyway?
A thread is a flow of control through a program with a single
 execution point.

Sounds an awful lot like a process, doesn't it? Well, it should.
 Threads are one of the pieces of a
process. Every process has at least
 one thread and, up until now, every process running Perl had
only one
 thread. With 5.005, though, you can create extra threads. We're going
 to show you how,
when, and why.

Threaded Program Models
There are three basic ways that you can structure a threaded
 program. Which model you choose
depends on what you need your program
 to do. For many non-trivial threaded programs you'll need to
choose
 different models for different pieces of your program.

Boss/Worker
The boss/worker model usually has one `boss' thread and one or more
 `worker' threads. The boss
thread gathers or generates tasks that need
 to be done, then parcels those tasks out to the
appropriate worker
 thread.

This model is common in GUI and server programs, where a main thread
 waits for some event and
then passes that event to the appropriate
 worker threads for processing. Once the event has been
passed on, the
 boss thread goes back to waiting for another event.

The boss thread does relatively little work. While tasks aren't
 necessarily performed faster than with
any other method, it tends to
 have the best user-response times.

Work Crew
In the work crew model, several threads are created that do
 essentially the same thing to different
pieces of data. It closely
 mirrors classical parallel processing and vector processors, where a
 large
array of processors do the exact same thing to many pieces of
 data.

This model is particularly useful if the system running the program
 will distribute multiple threads
across different processors. It can
 also be useful in ray tracing or rendering engines, where the

individual threads can pass on interim results to give the user visual
 feedback.

Pipeline
The pipeline model divides up a task into a series of steps, and
 passes the results of one step on to
the thread processing the
 next. Each thread does one thing to each piece of data and passes the

results to the next thread in line.

This model makes the most sense if you have multiple processors so two
 or more threads will be
executing in parallel, though it can often
 make sense in other contexts as well. It tends to keep the
individual
 tasks small and simple, as well as allowing some parts of the pipeline
 to block (on I/O or
system calls, for example) while other parts keep
 going. If you're running different parts of the pipeline
on different
 processors you may also take advantage of the caches on each
 processor.

Perl version 5.8.8 documentation - perlothrtut

Page 2http://perldoc.perl.org

This model is also handy for a form of recursive programming where,
 rather than having a subroutine
call itself, it instead creates
 another thread. Prime and Fibonacci generators both map well to this

form of the pipeline model. (A version of a prime number generator is
 presented later on.)

Native threads
There are several different ways to implement threads on a system. How
 threads are implemented
depends both on the vendor and, in some cases,
 the version of the operating system. Often the first
implementation
 will be relatively simple, but later versions of the OS will be more
 sophisticated.

While the information in this section is useful, it's not necessary,
 so you can skip it if you don't feel up
to it.

There are three basic categories of threads-user-mode threads, kernel
 threads, and multiprocessor
kernel threads.

User-mode threads are threads that live entirely within a program and
 its libraries. In this model, the
OS knows nothing about threads. As
 far as it's concerned, your process is just a process.

This is the easiest way to implement threads, and the way most OSes
 start. The big disadvantage is
that, since the OS knows nothing about
 threads, if one thread blocks they all do. Typical blocking
activities
 include most system calls, most I/O, and things like sleep().

Kernel threads are the next step in thread evolution. The OS knows
 about kernel threads, and makes
allowances for them. The main
 difference between a kernel thread and a user-mode thread is

blocking. With kernel threads, things that block a single thread don't
 block other threads. This is not
the case with user-mode threads,
 where the kernel blocks at the process level and not the thread
level.

This is a big step forward, and can give a threaded program quite a
 performance boost over
non-threaded programs. Threads that block
 performing I/O, for example, won't block threads that are
doing other
 things. Each process still has only one thread running at once,
 though, regardless of how
many CPUs a system might have.

Since kernel threading can interrupt a thread at any time, they will
 uncover some of the implicit locking
assumptions you may make in your
 program. For example, something as simple as $a = $a + 2
can behave
 unpredictably with kernel threads if $a is visible to other
 threads, as another thread may
have changed $a between the time it
 was fetched on the right hand side and the time the new value is
stored.

Multiprocessor Kernel Threads are the final step in thread
 support. With multiprocessor kernel threads
on a machine with multiple
 CPUs, the OS may schedule two or more threads to run simultaneously on
different CPUs.

This can give a serious performance boost to your threaded program,
 since more than one thread will
be executing at the same time. As a
 tradeoff, though, any of those nagging synchronization issues
that
 might not have shown with basic kernel threads will appear with a
 vengeance.

In addition to the different levels of OS involvement in threads,
 different OSes (and different thread
implementations for a particular
 OS) allocate CPU cycles to threads in different ways.

Cooperative multitasking systems have running threads give up control
 if one of two things happen. If
a thread calls a yield function, it
 gives up control. It also gives up control if the thread does
 something
that would cause it to block, such as perform I/O. In a
 cooperative multitasking implementation, one
thread can starve all the
 others for CPU time if it so chooses.

Preemptive multitasking systems interrupt threads at regular intervals
 while the system decides which
thread should run next. In a preemptive
 multitasking system, one thread usually won't monopolize the
CPU.

On some systems, there can be cooperative and preemptive threads
 running simultaneously.

Perl version 5.8.8 documentation - perlothrtut

Page 3http://perldoc.perl.org

(Threads running with realtime priorities
 often behave cooperatively, for example, while threads
running at
 normal priorities behave preemptively.)

What kind of threads are perl threads?
If you have experience with other thread implementations, you might
 find that things aren't quite what
you expect. It's very important to
 remember when dealing with Perl threads that Perl Threads Are Not
X
 Threads, for all values of X. They aren't POSIX threads, or
 DecThreads, or Java's Green threads,
or Win32 threads. There are
 similarities, and the broad concepts are the same, but if you start
 looking
for implementation details you're going to be either
 disappointed or confused. Possibly both.

This is not to say that Perl threads are completely different from
 everything that's ever come
before--they're not. Perl's threading
 model owes a lot to other thread models, especially POSIX. Just
as
 Perl is not C, though, Perl threads are not POSIX threads. So if you
 find yourself looking for
mutexes, or thread priorities, it's time to
 step back a bit and think about what you want to do and how
Perl can
 do it.

Threadsafe Modules
The addition of threads has changed Perl's internals
 substantially. There are implications for people
who write
 modules--especially modules with XS code or external libraries. While
 most modules won't
encounter any problems, modules that aren't
 explicitly tagged as thread-safe should be tested before
being used in
 production code.

Not all modules that you might use are thread-safe, and you should
 always assume a module is
unsafe unless the documentation says
 otherwise. This includes modules that are distributed as part of
the
 core. Threads are a beta feature, and even some of the standard
 modules aren't thread-safe.

If you're using a module that's not thread-safe for some reason, you
 can protect yourself by using
semaphores and lots of programming
 discipline to control access to the module. Semaphores are
covered
 later in the article. Perl Threads Are Different

Thread Basics
The core Thread module provides the basic functions you need to write
 threaded programs. In the
following sections we'll cover the basics,
 showing you what you need to do to create a threaded
program. After
 that, we'll go over some of the features of the Thread module that
 make threaded
programming easier.

Basic Thread Support
Thread support is a Perl compile-time option-it's something that's
 turned on or off when Perl is built at
your site, rather than when
 your programs are compiled. If your Perl wasn't compiled with thread

support enabled, then any attempt to use threads will fail.

Remember that the threading support in 5.005 is in beta release, and
 should be treated as such. You
should expect that it may not function
 entirely properly, and the thread interface may well change
some
 before it is a fully supported, production release. The beta version
 shouldn't be used for
mission-critical projects. Having said that,
 threaded Perl is pretty nifty, and worth a look.

Your programs can use the Config module to check whether threads are
 enabled. If your program
can't run without them, you can say something
 like:

 $Config{usethreads} or die "Recompile Perl with threads to run this
program.";

A possibly-threaded program using a possibly-threaded module might
 have code like this:

 use Config;
 use MyMod;

 if ($Config{usethreads}) {

Perl version 5.8.8 documentation - perlothrtut

Page 4http://perldoc.perl.org

 # We have threads
 require MyMod_threaded;
 import MyMod_threaded;
 } else {
 require MyMod_unthreaded;
 import MyMod_unthreaded;
 }

Since code that runs both with and without threads is usually pretty
 messy, it's best to isolate the
thread-specific code in its own
 module. In our example above, that's what MyMod_threaded is, and
it's
 only imported if we're running on a threaded Perl.

Creating Threads
The Thread package provides the tools you need to create new
 threads. Like any other module, you
need to tell Perl you want to use
 it; use Thread imports all the pieces you need to create basic

threads.

The simplest, straightforward way to create a thread is with new():

 use Thread;

 $thr = new Thread \&sub1;

 sub sub1 {
 print "In the thread\n";
 }

The new() method takes a reference to a subroutine and creates a new
 thread, which starts executing
in the referenced subroutine. Control
 then passes both to the subroutine and the caller.

If you need to, your program can pass parameters to the subroutine as
 part of the thread startup. Just
include the list of parameters as
 part of the Thread::new call, like this:

 use Thread;
 $Param3 = "foo";
 $thr = new Thread \&sub1, "Param 1", "Param 2", $Param3;
 $thr = new Thread \&sub1, @ParamList;
 $thr = new Thread \&sub1, qw(Param1 Param2 $Param3);

 sub sub1 {
 my @InboundParameters = @_;
 print "In the thread\n";
 print "got parameters >", join("<>", @InboundParameters), "<\n";
 }

The subroutine runs like a normal Perl subroutine, and the call to new
 Thread returns whatever the
subroutine returns.

The last example illustrates another feature of threads. You can spawn
 off several threads using the
same subroutine. Each thread executes
 the same subroutine, but in a separate thread with a
separate
 environment and potentially separate arguments.

The other way to spawn a new thread is with async(), which is a way to
 spin off a chunk of code like
eval(), but into its own thread:

 use Thread qw(async);

Perl version 5.8.8 documentation - perlothrtut

Page 5http://perldoc.perl.org

 $LineCount = 0;

 $thr = async {
 while(<>) {$LineCount++}
 print "Got $LineCount lines\n";
 };

 print "Waiting for the linecount to end\n";
 $thr->join;
 print "All done\n";

You'll notice we did a use Thread qw(async) in that example. async is
 not exported by default, so if
you want it, you'll either need to
 import it before you use it or fully qualify it as
 Thread::async. You'll
also note that there's a semicolon after the
 closing brace. That's because async() treats the following
block as an
 anonymous subroutine, so the semicolon is necessary.

Like eval(), the code executes in the same context as it would if it
 weren't spun off. Since both the
code inside and after the async start
 executing, you need to be careful with any shared resources.
Locking
 and other synchronization techniques are covered later.

Giving up control
There are times when you may find it useful to have a thread
 explicitly give up the CPU to another
thread. Your threading package
 might not support preemptive multitasking for threads, for example, or
you may be doing something compute-intensive and want to make sure
 that the user-interface thread
gets called frequently. Regardless,
 there are times that you might want a thread to give up the
processor.

Perl's threading package provides the yield() function that does
 this. yield() is pretty straightforward,
and works like this:

 use Thread qw(yield async);
 async {
 my $foo = 50;
 while ($foo--) { print "first async\n" }
 yield;
 $foo = 50;
 while ($foo--) { print "first async\n" }
 };
 async {
 my $foo = 50;
 while ($foo--) { print "second async\n" }
 yield;
 $foo = 50;
 while ($foo--) { print "second async\n" }
 };

Waiting For A Thread To Exit
Since threads are also subroutines, they can return values. To wait
 for a thread to exit and extract any
scalars it might return, you can
 use the join() method.

 use Thread;
 $thr = new Thread \&sub1;

 @ReturnData = $thr->join;
 print "Thread returned @ReturnData";

Perl version 5.8.8 documentation - perlothrtut

Page 6http://perldoc.perl.org

 sub sub1 { return "Fifty-six", "foo", 2; }

In the example above, the join() method returns as soon as the thread
 ends. In addition to waiting for
a thread to finish and gathering up
 any values that the thread might have returned, join() also
performs
 any OS cleanup necessary for the thread. That cleanup might be
 important, especially for
long-running programs that spawn lots of
 threads. If you don't want the return values and don't want
to wait
 for the thread to finish, you should call the detach() method
 instead. detach() is covered later in
the article.

Errors In Threads
So what happens when an error occurs in a thread? Any errors that
 could be caught with eval() are
postponed until the thread is
 joined. If your program never joins, the errors appear when your
 program
exits.

Errors deferred until a join() can be caught with eval():

 use Thread qw(async);
 $thr = async {$b = 3/0}; # Divide by zero error
 $foo = eval {$thr->join};
 if ($@) {
 print "died with error $@\n";
 } else {
 print "Hey, why aren't you dead?\n";
 }

eval() passes any results from the joined thread back unmodified, so
 if you want the return value of
the thread, this is your only chance
 to get them.

Ignoring A Thread
join() does three things: it waits for a thread to exit, cleans up
 after it, and returns any data the thread
may have produced. But what
 if you're not interested in the thread's return values, and you don't
 really
care when the thread finishes? All you want is for the thread
 to get cleaned up after when it's done.

In this case, you use the detach() method. Once a thread is detached,
 it'll run until it's finished, then
Perl will clean up after it
 automatically.

 use Thread;
 $thr = new Thread \&sub1; # Spawn the thread

 $thr->detach; # Now we officially don't care any more

 sub sub1 {
 $a = 0;
 while (1) {
 $a++;
 print "\$a is $a\n";
 sleep 1;
 }
 }

Once a thread is detached, it may not be joined, and any output that
 it might have produced (if it was
done and waiting for a join) is
 lost.

Threads And Data
Now that we've covered the basics of threads, it's time for our next
 topic: data. Threading introduces a
couple of complications to data
 access that non-threaded programs never need to worry about.

Perl version 5.8.8 documentation - perlothrtut

Page 7http://perldoc.perl.org

Shared And Unshared Data
The single most important thing to remember when using threads is that
 all threads potentially have
access to all the data anywhere in your
 program. While this is true with a nonthreaded Perl program
as well,
 it's especially important to remember with a threaded program, since
 more than one thread
can be accessing this data at once.

Perl's scoping rules don't change because you're using threads. If a
 subroutine (or block, in the case
of async()) could see a variable if
 you weren't running with threads, it can see it if you are. This is

especially important for the subroutines that create, and makes my
 variables even more important.
Remember--if your variables aren't
 lexically scoped (declared with my) you're probably sharing them

between threads.

Thread Pitfall: Races
While threads bring a new set of useful tools, they also bring a
 number of pitfalls. One pitfall is the
race condition:

 use Thread;
 $a = 1;
 $thr1 = Thread->new(\&sub1);
 $thr2 = Thread->new(\&sub2);

 sleep 10;
 print "$a\n";

 sub sub1 { $foo = $a; $a = $foo + 1; }
 sub sub2 { $bar = $a; $a = $bar + 1; }

What do you think $a will be? The answer, unfortunately, is "it
 depends." Both sub1() and sub2()
access the global variable $a, once
 to read and once to write. Depending on factors ranging from your
thread implementation's scheduling algorithm to the phase of the moon,
 $a can be 2 or 3.

Race conditions are caused by unsynchronized access to shared
 data. Without explicit
synchronization, there's no way to be sure that
 nothing has happened to the shared data between the
time you access it
 and the time you update it. Even this simple code fragment has the
 possibility of
error:

 use Thread qw(async);
 $a = 2;
 async{ $b = $a; $a = $b + 1; };
 async{ $c = $a; $a = $c + 1; };

Two threads both access $a. Each thread can potentially be interrupted
 at any point, or be executed
in any order. At the end, $a could be 3
 or 4, and both $b and $c could be 2 or 3.

Whenever your program accesses data or resources that can be accessed
 by other threads, you
must take steps to coordinate access or risk
 data corruption and race conditions.

Controlling access: lock()
The lock() function takes a variable (or subroutine, but we'll get to
 that later) and puts a lock on it. No
other thread may lock the
 variable until the locking thread exits the innermost block containing
 the
lock. Using lock() is straightforward:

 use Thread qw(async);
 $a = 4;
 $thr1 = async {
 $foo = 12;

Perl version 5.8.8 documentation - perlothrtut

Page 8http://perldoc.perl.org

 {
 lock ($a); # Block until we get access to $a
 $b = $a;
 $a = $b * $foo;
 }
 print "\$foo was $foo\n";
 };
 $thr2 = async {
 $bar = 7;
 {
 lock ($a); # Block until we can get access to $a
 $c = $a;
 $a = $c * $bar;
 }
 print "\$bar was $bar\n";
 };
 $thr1->join;
 $thr2->join;
 print "\$a is $a\n";

lock() blocks the thread until the variable being locked is
 available. When lock() returns, your thread
can be sure that no other
 thread can lock that variable until the innermost block containing the
 lock
exits.

It's important to note that locks don't prevent access to the variable
 in question, only lock attempts.
This is in keeping with Perl's
 longstanding tradition of courteous programming, and the advisory file

locking that flock() gives you. Locked subroutines behave differently,
 however. We'll cover that later in
the article.

You may lock arrays and hashes as well as scalars. Locking an array,
 though, will not block
subsequent locks on array elements, just lock
 attempts on the array itself.

Finally, locks are recursive, which means it's okay for a thread to
 lock a variable more than once. The
lock will last until the outermost
 lock() on the variable goes out of scope.

Thread Pitfall: Deadlocks
Locks are a handy tool to synchronize access to data. Using them
 properly is the key to safe shared
data. Unfortunately, locks aren't
 without their dangers. Consider the following code:

 use Thread qw(async yield);
 $a = 4;
 $b = "foo";
 async {
 lock($a);
 yield;
 sleep 20;
 lock ($b);
 };
 async {
 lock($b);
 yield;
 sleep 20;
 lock ($a);
 };

This program will probably hang until you kill it. The only way it
 won't hang is if one of the two async()
routines acquires both locks
 first. A guaranteed-to-hang version is more complicated, but the
 principle

Perl version 5.8.8 documentation - perlothrtut

Page 9http://perldoc.perl.org

is the same.

The first thread spawned by async() will grab a lock on $a then, a
 second or two later, try to grab a
lock on $b. Meanwhile, the second
 thread grabs a lock on $b, then later tries to grab a lock on $a.
The
 second lock attempt for both threads will block, each waiting for the
 other to release its lock.

This condition is called a deadlock, and it occurs whenever two or
 more threads are trying to get locks
on resources that the others
 own. Each thread will block, waiting for the other to release a lock
 on a
resource. That never happens, though, since the thread with the
 resource is itself waiting for a lock to
be released.

There are a number of ways to handle this sort of problem. The best
 way is to always have all threads
acquire locks in the exact same
 order. If, for example, you lock variables $a, $b, and $c, always lock

$a before $b, and $b before $c. It's also best to hold on to locks for
 as short a period of time to
minimize the risks of deadlock.

Queues: Passing Data Around
A queue is a special thread-safe object that lets you put data in one
 end and take it out the other
without having to worry about
 synchronization issues. They're pretty straightforward, and look like
 this:

 use Thread qw(async);
 use Thread::Queue;

 my $DataQueue = new Thread::Queue;
 $thr = async {
 while ($DataElement = $DataQueue->dequeue) {
 print "Popped $DataElement off the queue\n";
 }
 };

 $DataQueue->enqueue(12);
 $DataQueue->enqueue("A", "B", "C");
 $DataQueue->enqueue(\$thr);
 sleep 10;
 $DataQueue->enqueue(undef);

You create the queue with new Thread::Queue. Then you can add lists of
 scalars onto the end with
enqueue(), and pop scalars off the front of
 it with dequeue(). A queue has no fixed size, and can grow
as needed
 to hold everything pushed on to it.

If a queue is empty, dequeue() blocks until another thread enqueues
 something. This makes queues
ideal for event loops and other
 communications between threads.

Threads And Code
In addition to providing thread-safe access to data via locks and
 queues, threaded Perl also provides
general-purpose semaphores for
 coarser synchronization than locks provide and thread-safe access
to
 entire subroutines.

Semaphores: Synchronizing Data Access
Semaphores are a kind of generic locking mechanism. Unlike lock, which
 gets a lock on a particular
scalar, Perl doesn't associate any
 particular thing with a semaphore so you can use them to control

access to anything you like. In addition, semaphores can allow more
 than one thread to access a
resource at once, though by default
 semaphores only allow one thread access at a time.

Basic semaphores

Semaphores have two methods, down and up. down decrements the resource
 count, while up
increments it. down calls will block if the
 semaphore's current count would decrement below

Perl version 5.8.8 documentation - perlothrtut

Page 10http://perldoc.perl.org

zero. This program
 gives a quick demonstration:

 use Thread qw(yield);
 use Thread::Semaphore;
 my $semaphore = new Thread::Semaphore;
 $GlobalVariable = 0;

 $thr1 = new Thread \&sample_sub, 1;
 $thr2 = new Thread \&sample_sub, 2;
 $thr3 = new Thread \&sample_sub, 3;

 sub sample_sub {
 my $SubNumber = shift @_;
 my $TryCount = 10;
 my $LocalCopy;
 sleep 1;
 while ($TryCount--) {
 $semaphore->down;
 $LocalCopy = $GlobalVariable;
 print "$TryCount tries left for sub $SubNumber
(\$GlobalVariable is $GlobalVariable)\n";
 yield;
 sleep 2;
 $LocalCopy++;
 $GlobalVariable = $LocalCopy;
 $semaphore->up;
 }
 }

The three invocations of the subroutine all operate in sync. The
 semaphore, though, makes
sure that only one thread is accessing the
 global variable at once.

Advanced Semaphores

By default, semaphores behave like locks, letting only one thread
 down() them at a time.
However, there are other uses for semaphores.

Each semaphore has a counter attached to it. down() decrements the
 counter and up()
increments the counter. By default, semaphores are
 created with the counter set to one,
down() decrements by one, and
 up() increments by one. If down() attempts to decrement the
counter
 below zero, it blocks until the counter is large enough. Note that
 while a semaphore
can be created with a starting count of zero, any
 up() or down() always changes the counter
by at least
 one. $semaphore->down(0) is the same as $semaphore->down(1).

The question, of course, is why would you do something like this? Why
 create a semaphore
with a starting count that's not one, or why
 decrement/increment it by more than one? The
answer is resource
 availability. Many resources that you want to manage access for can be

safely used by more than one thread at once.

For example, let's take a GUI driven program. It has a semaphore that
 it uses to synchronize
access to the display, so only one thread is
 ever drawing at once. Handy, but of course you
don't want any thread
 to start drawing until things are properly set up. In this case, you
 can
create a semaphore with a counter set to zero, and up it when
 things are ready for drawing.

Semaphores with counters greater than one are also useful for
 establishing quotas. Say, for
example, that you have a number of
 threads that can do I/O at once. You don't want all the
threads
 reading or writing at once though, since that can potentially swamp
 your I/O channels,
or deplete your process' quota of filehandles. You
 can use a semaphore initialized to the
number of concurrent I/O
 requests (or open files) that you want at any one time, and have
your
 threads quietly block and unblock themselves.

Perl version 5.8.8 documentation - perlothrtut

Page 11http://perldoc.perl.org

Larger increments or decrements are handy in those cases where a
 thread needs to check out
or return a number of resources at once.

Attributes: Restricting Access To Subroutines
In addition to synchronizing access to data or resources, you might
 find it useful to synchronize
access to subroutines. You may be
 accessing a singular machine resource (perhaps a vector
processor), or
 find it easier to serialize calls to a particular subroutine than to
 have a set of locks and
semaphores.

One of the additions to Perl 5.005 is subroutine attributes. The
 Thread package uses these to provide
several flavors of
 serialization. It's important to remember that these attributes are
 used in the
compilation phase of your program so you can't change a
 subroutine's behavior while your program is
actually running.

Subroutine Locks
The basic subroutine lock looks like this:

 sub test_sub :locked {
 }

This ensures that only one thread will be executing this subroutine at
 any one time. Once a thread
calls this subroutine, any other thread
 that calls it will block until the thread in the subroutine exits
 it. A
more elaborate example looks like this:

 use Thread qw(yield);

 new Thread \&thread_sub, 1;
 new Thread \&thread_sub, 2;
 new Thread \&thread_sub, 3;
 new Thread \&thread_sub, 4;

 sub sync_sub :locked {
 my $CallingThread = shift @_;
 print "In sync_sub for thread $CallingThread\n";
 yield;
 sleep 3;
 print "Leaving sync_sub for thread $CallingThread\n";
 }

 sub thread_sub {
 my $ThreadID = shift @_;
 print "Thread $ThreadID calling sync_sub\n";
 sync_sub($ThreadID);
 print "$ThreadID is done with sync_sub\n";
 }

The locked attribute tells perl to lock sync_sub(), and if you run
 this, you can see that only one
thread is in it at any one time.

Methods
Locking an entire subroutine can sometimes be overkill, especially
 when dealing with Perl objects.
When calling a method for an object,
 for example, you want to serialize calls to a method, so that only
one
 thread will be in the subroutine for a particular object, but threads
 calling that subroutine for a
different object aren't blocked. The
 method attribute indicates whether the subroutine is really a
method.

Perl version 5.8.8 documentation - perlothrtut

Page 12http://perldoc.perl.org

 use Thread;

 sub tester {
 my $thrnum = shift @_;
 my $bar = new Foo;
 foreach (1..10) {
 print "$thrnum calling per_object\n";
 $bar->per_object($thrnum);
 print "$thrnum out of per_object\n";
 yield;
 print "$thrnum calling one_at_a_time\n";
 $bar->one_at_a_time($thrnum);
 print "$thrnum out of one_at_a_time\n";
 yield;
 }
 }

 foreach my $thrnum (1..10) {
 new Thread \&tester, $thrnum;
 }

 package Foo;
 sub new {
 my $class = shift @_;
 return bless [@_], $class;
 }

 sub per_object :locked :method {
 my ($class, $thrnum) = @_;
 print "In per_object for thread $thrnum\n";
 yield;
 sleep 2;
 print "Exiting per_object for thread $thrnum\n";
 }

 sub one_at_a_time :locked {
 my ($class, $thrnum) = @_;
 print "In one_at_a_time for thread $thrnum\n";
 yield;
 sleep 2;
 print "Exiting one_at_a_time for thread $thrnum\n";
 }

As you can see from the output (omitted for brevity; it's 800 lines)
 all the threads can be in
per_object() simultaneously, but only one
 thread is ever in one_at_a_time() at once.

Locking A Subroutine
You can lock a subroutine as you would lock a variable. Subroutine locks
 work the same as specifying
a locked attribute for the subroutine,
 and block all access to the subroutine for other threads until the
lock goes out of scope. When the subroutine isn't locked, any number
 of threads can be in it at once,
and getting a lock on a subroutine
 doesn't affect threads already in the subroutine. Getting a lock on a
subroutine looks like this:

 lock(\&sub_to_lock);

Perl version 5.8.8 documentation - perlothrtut

Page 13http://perldoc.perl.org

Simple enough. Unlike the locked attribute, which is a compile time
 option, locking and unlocking a
subroutine can be done at runtime at your
 discretion. There is some runtime penalty to using
lock(\&sub) instead
 of the locked attribute, so make sure you're choosing the proper
 method to do
the locking.

You'd choose lock(\&sub) when writing modules and code to run on both
 threaded and unthreaded
Perl, especially for code that will run on
 5.004 or earlier Perls. In that case, it's useful to have
subroutines
 that should be serialized lock themselves if they're running threaded,
 like so:

 package Foo;
 use Config;
 $Running_Threaded = 0;

 BEGIN { $Running_Threaded = $Config{'usethreads'} }

 sub sub1 { lock(\&sub1) if $Running_Threaded }

This way you can ensure single-threadedness regardless of which
 version of Perl you're running.

General Thread Utility Routines
We've covered the workhorse parts of Perl's threading package, and
 with these tools you should be
well on your way to writing threaded
 code and packages. There are a few useful little pieces that
didn't
 really fit in anyplace else.

What Thread Am I In?
The Thread->self method provides your program with a way to get an
 object representing the thread
it's currently in. You can use this
 object in the same way as the ones returned from the thread
creation.

Thread IDs
tid() is a thread object method that returns the thread ID of the
 thread the object represents. Thread
IDs are integers, with the main
 thread in a program being 0. Currently Perl assigns a unique tid to

every thread ever created in your program, assigning the first thread
 to be created a tid of 1, and
increasing the tid by 1 for each new
 thread that's created.

Are These Threads The Same?
The equal() method takes two thread objects and returns true if the objects represent the same
thread, and false if they don't.

What Threads Are Running?
Thread->list returns a list of thread objects, one for each thread
 that's currently running. Handy for a
number of things, including
 cleaning up at the end of your program:

 # Loop through all the threads
 foreach $thr (Thread->list) {
 # Don't join the main thread or ourselves
 if ($thr->tid && !Thread::equal($thr, Thread->self)) {
 $thr->join;
 }
 }

The example above is just for illustration. It isn't strictly
 necessary to join all the threads you create,
since Perl detaches all
 the threads before it exits.

Perl version 5.8.8 documentation - perlothrtut

Page 14http://perldoc.perl.org

A Complete Example
Confused yet? It's time for an example program to show some of the
 things we've covered. This
program finds prime numbers using threads.

 1 #!/usr/bin/perl -w
 2 # prime-pthread, courtesy of Tom Christiansen
 3
 4 use strict;
 5
 6 use Thread;
 7 use Thread::Queue;
 8
 9 my $stream = new Thread::Queue;
 10 my $kid = new Thread(\&check_num, $stream, 2);
 11
 12 for my $i (3 .. 1000) {
 13 $stream->enqueue($i);
 14 }
 15
 16 $stream->enqueue(undef);
 17 $kid->join();
 18
 19 sub check_num {
 20 my ($upstream, $cur_prime) = @_;
 21 my $kid;
 22 my $downstream = new Thread::Queue;
 23 while (my $num = $upstream->dequeue) {
 24 next unless $num % $cur_prime;
 25 if ($kid) {
 26 $downstream->enqueue($num);
 27 	 } else {
 28 print "Found prime $num\n";
 29	 $kid = new Thread(\&check_num, $downstream, $num);
 30 }
 31 }
 32 $downstream->enqueue(undef) if $kid;
 33 $kid->join()		 if $kid;
 34 }

This program uses the pipeline model to generate prime numbers. Each
 thread in the pipeline has an
input queue that feeds numbers to be
 checked, a prime number that it's responsible for, and an output
queue
 that it funnels numbers that have failed the check into. If the thread
 has a number that's failed
its check and there's no child thread, then
 the thread must have found a new prime number. In that
case, a new
 child thread is created for that prime and stuck on the end of the
 pipeline.

This probably sounds a bit more confusing than it really is, so lets
 go through this program piece by
piece and see what it does. (For
 those of you who might be trying to remember exactly what a prime

number is, it's a number that's only evenly divisible by itself and 1)

The bulk of the work is done by the check_num() subroutine, which
 takes a reference to its input
queue and a prime number that it's
 responsible for. After pulling in the input queue and the prime that

the subroutine's checking (line 20), we create a new queue (line 22)
 and reserve a scalar for the
thread that we're likely to create later
 (line 21).

The while loop from lines 23 to line 31 grabs a scalar off the input
 queue and checks against the
prime this thread is responsible
 for. Line 24 checks to see if there's a remainder when we modulo the

number to be checked against our prime. If there is one, the number
 must not be evenly divisible by

Perl version 5.8.8 documentation - perlothrtut

Page 15http://perldoc.perl.org

our prime, so we need to either pass
 it on to the next thread if we've created one (line 26) or create a

new thread if we haven't.

The new thread creation is line 29. We pass on to it a reference to
 the queue we've created, and the
prime number we've found.

Finally, once the loop terminates (because we got a 0 or undef in the
 queue, which serves as a note
to die), we pass on the notice to our
 child and wait for it to exit if we've created a child (Lines 32 and

37).

Meanwhile, back in the main thread, we create a queue (line 9) and the
 initial child thread (line 10),
and pre-seed it with the first prime:
 2. Then we queue all the numbers from 3 to 1000 for checking
(lines
 12-14), then queue a die notice (line 16) and wait for the first child
 thread to terminate (line 17).
Because a child won't die until its
 child has died, we know that we're done once we return from the
join.

That's how it works. It's pretty simple; as with many Perl programs,
 the explanation is much longer
than the program.

Conclusion
A complete thread tutorial could fill a book (and has, many times),
 but this should get you well on your
way. The final authority on how
 Perl's threads behave is the documentation bundled with the Perl

distribution, but with what we've covered in this article, you should
 be well on your way to becoming a
threaded Perl expert.

Bibliography
Here's a short bibliography courtesy of Jürgen Christoffel:

Introductory Texts
Birrell, Andrew D. An Introduction to Programming with
 Threads. Digital Equipment Corporation,
1989, DEC-SRC Research Report
 #35 online as

http://www.research.digital.com/SRC/staff/birrell/bib.html (highly
 recommended)

Robbins, Kay. A., and Steven Robbins. Practical Unix Programming: A
 Guide to Concurrency,
Communication, and
 Multithreading. Prentice-Hall, 1996.

Lewis, Bill, and Daniel J. Berg. Multithreaded Programming with
 Pthreads. Prentice Hall, 1997, ISBN
0-13-443698-9 (a well-written
 introduction to threads).

Nelson, Greg (editor). Systems Programming with Modula-3. Prentice
 Hall, 1991, ISBN
0-13-590464-1.

Nichols, Bradford, Dick Buttlar, and Jacqueline Proulx Farrell.
 Pthreads Programming. O'Reilly &
Associates, 1996, ISBN 156592-115-1
 (covers POSIX threads).

OS-Related References
Boykin, Joseph, David Kirschen, Alan Langerman, and Susan
 LoVerso. Programming under Mach.
Addison-Wesley, 1994, ISBN
 0-201-52739-1.

Tanenbaum, Andrew S. Distributed Operating Systems. Prentice Hall,
 1995, ISBN 0-13-219908-4
(great textbook).

Silberschatz, Abraham, and Peter B. Galvin. Operating System Concepts,
 4th ed. Addison-Wesley,
1995, ISBN 0-201-59292-4

Other References
Arnold, Ken and James Gosling. The Java Programming Language, 2nd
 ed. Addison-Wesley, 1998,
ISBN 0-201-31006-6.

Le Sergent, T. and B. Berthomieu. "Incremental MultiThreaded Garbage
 Collection on Virtually

Perl version 5.8.8 documentation - perlothrtut

Page 16http://perldoc.perl.org

Shared Memory Architectures" in Memory
 Management: Proc. of the International Workshop IWMM
92, St. Malo,
 France, September 1992, Yves Bekkers and Jacques Cohen, eds. Springer,
 1992, ISBN
3540-55940-X (real-life thread applications).

Acknowledgements
Thanks (in no particular order) to Chaim Frenkel, Steve Fink, Gurusamy
 Sarathy, Ilya Zakharevich,
Benjamin Sugars, Jürgen Christoffel, Joshua
 Pritikin, and Alan Burlison, for their help in
reality-checking and
 polishing this article. Big thanks to Tom Christiansen for his rewrite
 of the prime
number generator.

AUTHOR
Dan Sugalski <sugalskd@ous.edu>

Copyrights
This article originally appeared in The Perl Journal #10, and is
 copyright 1998 The Perl Journal. It
appears courtesy of Jon Orwant and
 The Perl Journal. This document may be distributed under the
same terms
 as Perl itself.

