
Perl version 5.8.8 documentation - perlpacktut

Page 1http://perldoc.perl.org

NAME
perlpacktut - tutorial on pack and unpack

DESCRIPTION
pack and unpack are two functions for transforming data according
 to a user-defined template,
between the guarded way Perl stores values
 and some well-defined representation as might be
required in the environment of a Perl program. Unfortunately, they're also two of the most
misunderstood and most often overlooked functions that Perl
 provides. This tutorial will demystify
them for you.

The Basic Principle
Most programming languages don't shelter the memory where variables are
 stored. In C, for instance,
you can take the address of some variable,
 and the sizeof operator tells you how many bytes are
allocated to
 the variable. Using the address and the size, you may access the storage
 to your heart's
content.

In Perl, you just can't access memory at random, but the structural and
 representational conversion
provided by pack and unpack is an
 excellent alternative. The pack function converts values to a
byte
 sequence containing representations according to a given specification,
 the so-called "template"
argument. unpack is the reverse process,
 deriving some values from the contents of a string of
bytes. (Be cautioned,
 however, that not all that has been packed together can be neatly unpacked - a
very common experience as seasoned travellers are likely to confirm.)

Why, you may ask, would you need a chunk of memory containing some values
 in binary
representation? One good reason is input and output accessing
 some file, a device, or a network
connection, whereby this binary
 representation is either forced on you or will give you some benefit
 in
processing. Another cause is passing data to some system call that
 is not available as a Perl function:
syscall requires you to provide
 parameters stored in the way it happens in a C program. Even text
processing (as shown in the next section) may be simplified with judicious usage of these two
functions.

To see how (un)packing works, we'll start with a simple template
 code where the conversion is in low
gear: between the contents of a byte
 sequence and a string of hexadecimal digits. Let's use unpack,
since
 this is likely to remind you of a dump program, or some desperate last
 message unfortunate
programs are wont to throw at you before they expire
 into the wild blue yonder. Assuming that the
variable $mem holds a sequence of bytes that we'd like to inspect without assuming anything about its
meaning, we can write

 my($hex) = unpack('H*', $mem);
 print "$hex\n";

whereupon we might see something like this, with each pair of hex digits
 corresponding to a byte:

 41204d414e204120504c414e20412043414e414c2050414e414d41

What was in this chunk of memory? Numbers, characters, or a mixture of
 both? Assuming that we're
on a computer where ASCII (or some similar)
 encoding is used: hexadecimal values in the range
0x40 - 0x5A
 indicate an uppercase letter, and 0x20 encodes a space. So we might
 assume it is a
piece of text, which some are able to read like a tabloid;
 but others will have to get hold of an ASCII
table and relive that
 firstgrader feeling. Not caring too much about which way to read this,
 we note
that unpack with the template code H converts the contents
 of a sequence of bytes into the
customary hexadecimal notation. Since
 "a sequence of" is a pretty vague indication of quantity, H has
been
 defined to convert just a single hexadecimal digit unless it is followed
 by a repeat count. An
asterisk for the repeat count means to use whatever
 remains.

The inverse operation - packing byte contents from a string of hexadecimal
 digits - is just as easily
written. For instance:

Perl version 5.8.8 documentation - perlpacktut

Page 2http://perldoc.perl.org

 my $s = pack('H2' x 10, map { "3$_" } (0..9));
 print "$s\n";

Since we feed a list of ten 2-digit hexadecimal strings to pack, the
 pack template should contain ten
pack codes. If this is run on a computer
 with ASCII character coding, it will print 0123456789.

Packing Text
Let's suppose you've got to read in a data file like this:

 Date |Description | Income|Expenditure
 01/24/2001 Ahmed's Camel Emporium 1147.99
 01/28/2001 Flea spray 24.99
 01/29/2001 Camel rides to tourists 235.00

How do we do it? You might think first to use split; however, since split collapses blank fields,
you'll never know whether a record was
 income or expenditure. Oops. Well, you could always use
substr:

 while (<>) {
 my $date = substr($_, 0, 11);
 my $desc = substr($_, 12, 27);
 my $income = substr($_, 40, 7);
 my $expend = substr($_, 52, 7);
 ...
 }

It's not really a barrel of laughs, is it? In fact, it's worse than it
 may seem; the eagle-eyed may notice
that the first field should only be
 10 characters wide, and the error has propagated right through the
other
 numbers - which we've had to count by hand. So it's error-prone as well
 as horribly unfriendly.

Or maybe we could use regular expressions:

 while (<>) {
 my($date, $desc, $income, $expend) =
 m|(\d\d/\d\d/\d{4}) (.{27}) (.{7})(.*)|;
 ...
 }

Urgh. Well, it's a bit better, but - well, would you want to maintain
 that?

Hey, isn't Perl supposed to make this sort of thing easy? Well, it does,
 if you use the right tools. pack
and unpack are designed to help
 you out when dealing with fixed-width data like the above. Let's
have a
 look at a solution with unpack:

 while (<>) {
 my($date, $desc, $income, $expend) = unpack("A10xA27xA7A*", $_);
 ...
 }

That looks a bit nicer; but we've got to take apart that weird template.
 Where did I pull that out of?

OK, let's have a look at some of our data again; in fact, we'll include
 the headers, and a handy ruler
so we can keep track of where we are.

 1 2 3 4 5
 1234567890123456789012345678901234567890123456789012345678
 Date |Description | Income|Expenditure

Perl version 5.8.8 documentation - perlpacktut

Page 3http://perldoc.perl.org

 01/28/2001 Flea spray 24.99
 01/29/2001 Camel rides to tourists 235.00

From this, we can see that the date column stretches from column 1 to
 column 10 - ten characters
wide. The pack-ese for "character" is A, and ten of them are A10. So if we just wanted to extract the

dates, we could say this:

 my($date) = unpack("A10", $_);

OK, what's next? Between the date and the description is a blank column;
 we want to skip over that.
The x template means "skip forward", so we
 want one of those. Next, we have another batch of
characters, from 12 to
 38. That's 27 more characters, hence A27. (Don't make the fencepost
 error -
there are 27 characters between 12 and 38, not 26. Count 'em!)

Now we skip another character and pick up the next 7 characters:

 my($date,$description,$income) = unpack("A10xA27xA7", $_);

Now comes the clever bit. Lines in our ledger which are just income and
 not expenditure might end at
column 46. Hence, we don't want to tell our unpack pattern that we need to find another 12
characters; we'll
 just say "if there's anything left, take it". As you might guess from
 regular
expressions, that's what the * means: "use everything
 remaining".

Be warned, though, that unlike regular expressions, if the unpack
 template doesn't match the
incoming data, Perl will scream and die.

Hence, putting it all together:

 my($date,$description,$income,$expend) = unpack("A10xA27xA7xA*", $_);

Now, that's our data parsed. I suppose what we might want to do now is
 total up our income and
expenditure, and add another line to the end of
 our ledger - in the same format - saying how much
we've brought in and
 how much we've spent:

 while (<>) {
 my($date, $desc, $income, $expend) = unpack("A10xA27xA7xA*", $_);
 $tot_income += $income;
 $tot_expend += $expend;
 }

 $tot_income = sprintf("%.2f", $tot_income); # Get them into
 $tot_expend = sprintf("%.2f", $tot_expend); # "financial" format

 $date = POSIX::strftime("%m/%d/%Y", localtime);

 # OK, let's go:

 print pack("A10xA27xA7xA*", $date, "Totals", $tot_income, $tot_expend);

Oh, hmm. That didn't quite work. Let's see what happened:

 01/24/2001 Ahmed's Camel Emporium 1147.99
 01/28/2001 Flea spray 24.99
 01/29/2001 Camel rides to tourists 1235.00
 03/23/2001Totals 1235.001172.98

Perl version 5.8.8 documentation - perlpacktut

Page 4http://perldoc.perl.org

OK, it's a start, but what happened to the spaces? We put x, didn't
 we? Shouldn't it skip forward?
Let's look at what "pack" in perlfunc says:

 x A null byte.

Urgh. No wonder. There's a big difference between "a null byte",
 character zero, and "a space",
character 32. Perl's put something
 between the date and the description - but unfortunately, we can't
see
 it!

What we actually need to do is expand the width of the fields. The A
 format pads any non-existent
characters with spaces, so we can use the
 additional spaces to line up our fields, like this:

 print pack("A11 A28 A8 A*", $date, "Totals", $tot_income, $tot_expend);

(Note that you can put spaces in the template to make it more readable,
 but they don't translate to
spaces in the output.) Here's what we got
 this time:

 01/24/2001 Ahmed's Camel Emporium 1147.99
 01/28/2001 Flea spray 24.99
 01/29/2001 Camel rides to tourists 1235.00
 03/23/2001 Totals 1235.00 1172.98

That's a bit better, but we still have that last column which needs to
 be moved further over. There's an
easy way to fix this up:
 unfortunately, we can't get pack to right-justify our fields, but we
 can get
sprintf to do it:

 $tot_income = sprintf("%.2f", $tot_income);
 $tot_expend = sprintf("%12.2f", $tot_expend);
 $date = POSIX::strftime("%m/%d/%Y", localtime);
 print pack("A11 A28 A8 A*", $date, "Totals", $tot_income, $tot_expend);

This time we get the right answer:

 01/28/2001 Flea spray 24.99
 01/29/2001 Camel rides to tourists 1235.00
 03/23/2001 Totals 1235.00 1172.98

So that's how we consume and produce fixed-width data. Let's recap what
 we've seen of pack and
unpack so far:

Use pack to go from several pieces of data to one fixed-width
 version; use unpack to turn a
fixed-width-format string into several
 pieces of data.

The pack format A means "any character"; if you're packing and
 you've run out of things to
pack, pack will fill the rest up with
 spaces.

x means "skip a byte" when unpacking; when packing, it means
 "introduce a null byte" - that's
probably not what you mean if you're
 dealing with plain text.

You can follow the formats with numbers to say how many characters
 should be affected by that
format: A12 means "take 12 characters"; x6 means "skip 6 bytes" or "character 0, 6 times".

Instead of a number, you can use * to mean "consume everything else
 left".

Warning: when packing multiple pieces of data, * only means
 "consume all of the current piece
of data". That's to say

 pack("A*A*", $one, $two)

Perl version 5.8.8 documentation - perlpacktut

Page 5http://perldoc.perl.org

packs all of $one into the first A* and then all of $two into
 the second. This is a general
principle: each format character
 corresponds to one piece of data to be packed.

Packing Numbers
So much for textual data. Let's get onto the meaty stuff that pack
 and unpack are best at: handling
binary formats for numbers. There is,
 of course, not just one binary format - life would be too simple -
but
 Perl will do all the finicky labor for you.

Integers
Packing and unpacking numbers implies conversion to and from some specific binary representation.
Leaving floating point numbers
 aside for the moment, the salient properties of any such
representation
 are:

the number of bytes used for storing the integer,

whether the contents are interpreted as a signed or unsigned number,

the byte ordering: whether the first byte is the least or most
 significant byte (or: little-endian or
big-endian, respectively).

So, for instance, to pack 20302 to a signed 16 bit integer in your
 computer's representation you write

 my $ps = pack('s', 20302);

Again, the result is a string, now containing 2 bytes. If you print this string (which is, generally, not
recommended) you might see ON or NO (depending on your system's byte ordering) - or something

entirely different if your computer doesn't use ASCII character encoding.
 Unpacking $ps with the
same template returns the original integer value:

 my($s) = unpack('s', $ps);

This is true for all numeric template codes. But don't expect miracles:
 if the packed value exceeds the
allotted byte capacity, high order bits
 are silently discarded, and unpack certainly won't be able to pull
them
 back out of some magic hat. And, when you pack using a signed template
 code such as s, an
excess value may result in the sign bit
 getting set, and unpacking this will smartly return a negative
value.

16 bits won't get you too far with integers, but there is l and L
 for signed and unsigned 32-bit
integers. And if this is not enough and
 your system supports 64 bit integers you can push the limits
much closer
 to infinity with pack codes q and Q. A notable exception is provided
 by pack codes i and
I for signed and unsigned integers of the "local custom" variety: Such an integer will take up as many
bytes as
 a local C compiler returns for sizeof(int), but it'll use at least
 32 bits.

Each of the integer pack codes sSlLqQ results in a fixed number of bytes,
 no matter where you
execute your program. This may be useful for some applications, but it does not provide for a portable
way to pass data structures between Perl and C programs (bound to happen when you call XS
extensions or the Perl function syscall), or when you read or
 write binary files. What you'll need in
this case are template codes that
 depend on what your local C compiler compiles when you code
short or unsigned long, for instance. These codes and their corresponding
 byte lengths are
shown in the table below. Since the C standard leaves
 much leeway with respect to the relative sizes
of these data types, actual
 values may vary, and that's why the values are given as expressions in
 C
and Perl. (If you'd like to use values from %Config in your program
 you have to import it with use
Config.)

 signed unsigned byte length in C byte length in Perl
 s! S! sizeof(short) $Config{shortsize}
 i! I! sizeof(int) $Config{intsize}
 l! L! sizeof(long) $Config{longsize}

Perl version 5.8.8 documentation - perlpacktut

Page 6http://perldoc.perl.org

 q! Q! sizeof(long long) $Config{longlongsize}

The i! and I! codes aren't different from i and I; they are
 tolerated for completeness' sake.

Unpacking a Stack Frame
Requesting a particular byte ordering may be necessary when you work with
 binary data coming from
some specific architecture whereas your program could
 run on a totally different system. As an
example, assume you have 24 bytes
 containing a stack frame as it happens on an Intel 8086:

 +---------+ +----+----+ +---------+
 TOS: | IP | TOS+4:| FL | FH | FLAGS TOS+14:| SI |
 +---------+ +----+----+ +---------+
 | CS | | AL | AH | AX | DI |
 +---------+ +----+----+ +---------+
 | BL | BH | BX | BP |
 +----+----+ +---------+
 | CL | CH | CX | DS |
 +----+----+ +---------+
 | DL | DH | DX | ES |
 +----+----+ +---------+

First, we note that this time-honored 16-bit CPU uses little-endian order,
 and that's why the low order
byte is stored at the lower address. To
 unpack such a (signed) short we'll have to use code v. A
repeat
 count unpacks all 12 shorts:

 my($ip, $cs, $flags, $ax, $bx, $cd, $dx, $si, $di, $bp, $ds, $es) =
 unpack('v12', $frame);

Alternatively, we could have used C to unpack the individually
 accessible byte registers FL, FH, AL,
AH, etc.:

 my($fl, $fh, $al, $ah, $bl, $bh, $cl, $ch, $dl, $dh) =
 unpack('C10', substr($frame, 4, 10));

It would be nice if we could do this in one fell swoop: unpack a short,
 back up a little, and then unpack
2 bytes. Since Perl is nice, it
 proffers the template code X to back up one byte. Putting this all

together, we may now write:

 my($ip, $cs,
 $flags,$fl,$fh,
 $ax,$al,$ah, $bx,$bl,$bh, $cx,$cl,$ch, $dx,$dl,$dh,
 $si, $di, $bp, $ds, $es) =
 unpack('v2' . ('vXXCC' x 5) . 'v5', $frame);

(The clumsy construction of the template can be avoided - just read on!)

We've taken some pains to construct the template so that it matches
 the contents of our frame buffer.
Otherwise we'd either get undefined values,
 or unpack could not unpack all. If pack runs out of
items, it will
 supply null strings (which are coerced into zeroes whenever the pack code
 says so).

How to Eat an Egg on a Net
The pack code for big-endian (high order byte at the lowest address) is n for 16 bit and N for 32 bit
integers. You use these codes
 if you know that your data comes from a compliant architecture, but,

surprisingly enough, you should also use these pack codes if you
 exchange binary data, across the
network, with some system that you
 know next to nothing about. The simple reason is that this
 order
has been chosen as the network order, and all standard-fearing
 programs ought to follow this

Perl version 5.8.8 documentation - perlpacktut

Page 7http://perldoc.perl.org

convention. (This is, of course, a stern
 backing for one of the Lilliputian parties and may well influence
the
 political development there.) So, if the protocol expects you to send
 a message by sending the
length first, followed by just so many bytes,
 you could write:

 my $buf = pack('N', length($msg)) . $msg;

or even:

 my $buf = pack('NA*', length($msg), $msg);

and pass $buf to your send routine. Some protocols demand that the
 count should include the length
of the count itself: then just add 4
 to the data length. (But make sure to read Lengths and Widths
before
 you really code this!)

Floating point Numbers
For packing floating point numbers you have the choice between the
 pack codes f and d which pack
into (or unpack from) single-precision or
 double-precision representation as it is provided by your
system. (There
 is no such thing as a network representation for reals, so if you want
 to send your real
numbers across computer boundaries, you'd better stick
 to ASCII representation, unless you're
absolutely sure what's on the other
 end of the line.)

Exotic Templates
Bit Strings

Bits are the atoms in the memory world. Access to individual bits may
 have to be used either as a last
resort or because it is the most
 convenient way to handle your data. Bit string (un)packing converts

between strings containing a series of 0 and 1 characters and
 a sequence of bytes each containing a
group of 8 bits. This is almost
 as simple as it sounds, except that there are two ways the contents of
 a
byte may be written as a bit string. Let's have a look at an annotated
 byte:

 7 6 5 4 3 2 1 0
 +-----------------+
 | 1 0 0 0 1 1 0 0 |
 +-----------------+
 MSB LSB

It's egg-eating all over again: Some think that as a bit string this should
 be written "10001100" i.e.
beginning with the most significant bit, others
 insist on "00110001". Well, Perl isn't biased, so that's
why we have two bit
 string codes:

 $byte = pack('B8', '10001100'); # start with MSB
 $byte = pack('b8', '00110001'); # start with LSB

It is not possible to pack or unpack bit fields - just integral bytes. pack always starts at the next byte
boundary and "rounds up" to the
 next multiple of 8 by adding zero bits as required. (If you do want bit

fields, there is "vec" in perlfunc. Or you could implement bit field handling at the character string level,
using split, substr, and
 concatenation on unpacked bit strings.)

To illustrate unpacking for bit strings, we'll decompose a simple
 status register (a "-" stands for a
"reserved" bit):

 +-----------------+-----------------+
 | S Z - A - P - C | - - - - O D I T |
 +-----------------+-----------------+
 MSB LSB MSB LSB

Converting these two bytes to a string can be done with the unpack template 'b16'. To obtain the

Perl version 5.8.8 documentation - perlpacktut

Page 8http://perldoc.perl.org

individual bit values from the bit
 string we use split with the "empty" separator pattern which
dissects
 into individual characters. Bit values from the "reserved" positions are
 simply assigned to
undef, a convenient notation for "I don't care where
 this goes".

 ($carry, undef, $parity, undef, $auxcarry, undef, $zero, $sign,
 $trace, $interrupt, $direction, $overflow) =
 split(//, unpack('b16', $status));

We could have used an unpack template 'b12' just as well, since the
 last 4 bits can be ignored
anyway.

Uuencoding
Another odd-man-out in the template alphabet is u, which packs an
 "uuencoded string". ("uu" is short
for Unix-to-Unix.) Chances are that
 you won't ever need this encoding technique which was invented
to overcome
 the shortcomings of old-fashioned transmission mediums that do not support
 other than
simple ASCII data. The essential recipe is simple: Take three bytes, or 24 bits. Split them into 4
six-packs, adding a space (0x20) to each. Repeat until all of the data is blended. Fold groups of 4
bytes into lines no longer than 60 and garnish them in front with the original byte count (incremented
by 0x20) and a "\n" at the end. - The pack chef will
 prepare this for you, a la minute, when you
select pack code u on the menu:

 my $uubuf = pack('u', $bindat);

A repeat count after u sets the number of bytes to put into an
 uuencoded line, which is the maximum
of 45 by default, but could be
 set to some (smaller) integer multiple of three. unpack simply ignores

the repeat count.

Doing Sums
An even stranger template code is %<number>. First, because it's used as a prefix to some other
template code. Second, because it
 cannot be used in pack at all, and third, in unpack, doesn't return
the
 data as defined by the template code it precedes. Instead it'll give you an
 integer of number bits
that is computed from the data value by doing sums. For numeric unpack codes, no big feat is
achieved:

 my $buf = pack('iii', 100, 20, 3);
 print unpack('%32i3', $buf), "\n"; # prints 123

For string values, % returns the sum of the byte values saving
 you the trouble of a sum loop with
substr and ord:

 print unpack('%32A*', "\x01\x10"), "\n"; # prints 17

Although the % code is documented as returning a "checksum":
 don't put your trust in such values!
Even when applied to a small number
 of bytes, they won't guarantee a noticeable Hamming distance.

In connection with b or B, % simply adds bits, and this can be put
 to good use to count set bits
efficiently:

 my $bitcount = unpack('%32b*', $mask);

And an even parity bit can be determined like this:

 my $evenparity = unpack('%1b*', $mask);

Perl version 5.8.8 documentation - perlpacktut

Page 9http://perldoc.perl.org

Unicode
Unicode is a character set that can represent most characters in most of
 the world's languages,
providing room for over one million different
 characters. Unicode 3.1 specifies 94,140 characters: The
Basic Latin
 characters are assigned to the numbers 0 - 127. The Latin-1 Supplement with
 characters
that are used in several European languages is in the next
 range, up to 255. After some more Latin
extensions we find the character
 sets from languages using non-Roman alphabets, interspersed with
a
 variety of symbol sets such as currency symbols, Zapf Dingbats or Braille.
 (You might want to visit
www.unicode.org for a look at some of
 them - my personal favourites are Telugu and Kannada.)

The Unicode character sets associates characters with integers. Encoding
 these numbers in an equal
number of bytes would more than double the
 requirements for storing texts written in Latin alphabets.

The UTF-8 encoding avoids this by storing the most common (from a western
 point of view)
characters in a single byte while encoding the rarer
 ones in three or more bytes.

So what has this got to do with pack? Well, if you want to convert
 between a Unicode number and its
UTF-8 representation you can do so by
 using template code U. As an example, let's produce the
UTF-8
 representation of the Euro currency symbol (code number 0x20AC):

 $UTF8{Euro} = pack('U', 0x20AC);

Inspecting $UTF8{Euro} shows that it contains 3 bytes: "\xe2\x82\xac". The
 round trip can be
completed with unpack:

 $Unicode{Euro} = unpack('U', $UTF8{Euro});

Usually you'll want to pack or unpack UTF-8 strings:

 # pack and unpack the Hebrew alphabet
 my $alefbet = pack('U*', 0x05d0..0x05ea);
 my @hebrew = unpack('U*', $utf);

Another Portable Binary Encoding
The pack code w has been added to support a portable binary data
 encoding scheme that goes way
beyond simple integers. (Details can
 be found at Casbah.org, the Scarab project.) A BER (Binary
Encoded
 Representation) compressed unsigned integer stores base 128
 digits, most significant digit
first, with as few digits as possible.
 Bit eight (the high bit) is set on each byte except the last. There
 is
no size limit to BER encoding, but Perl won't go to extremes.

 my $berbuf = pack('w*', 1, 128, 128+1, 128*128+127);

A hex dump of $berbuf, with spaces inserted at the right places,
 shows 01 8100 8101 81807F.
Since the last byte is always less than
 128, unpack knows where to stop.

Template Grouping
Prior to Perl 5.8, repetitions of templates had to be made by x-multiplication of template strings. Now
there is a better way as
 we may use the pack codes (and) combined with a repeat count.
 The
unpack template from the Stack Frame example can simply
 be written like this:

 unpack('v2 (vXXCC)5 v5', $frame)

Let's explore this feature a little more. We'll begin with the equivalent of

 join('', map(substr($_, 0, 1), @str))

which returns a string consisting of the first character from each string.
 Using pack, we can write

Perl version 5.8.8 documentation - perlpacktut

Page 10http://perldoc.perl.org

 pack('(A)'.@str, @str)

or, because a repeat count * means "repeat as often as required",
 simply

 pack('(A)*', @str)

(Note that the template A* would only have packed $str[0] in full
 length.)

To pack dates stored as triplets (day, month, year) in an array @dates
 into a sequence of byte, byte,
short integer we can write

 $pd = pack('(CCS)*', map(@$_, @dates));

To swap pairs of characters in a string (with even length) one could use
 several techniques. First, let's
use x and X to skip forward and back:

 $s = pack('(A)*', unpack('(xAXXAx)*', $s));

We can also use @ to jump to an offset, with 0 being the position where
 we were when the last (was
encountered:

 $s = pack('(A)*', unpack('(@1A @0A @2)*', $s));

Finally, there is also an entirely different approach by unpacking big
 endian shorts and packing them
in the reverse byte order:

 $s = pack('(v)*', unpack('(n)*', $s);

Lengths and Widths
String Lengths

In the previous section we've seen a network message that was constructed
 by prefixing the binary
message length to the actual message. You'll find
 that packing a length followed by so many bytes of
data is a frequently used recipe since appending a null byte won't work
 if a null byte may be part of
the data. Here is an example where both
 techniques are used: after two null terminated strings with
source and
 destination address, a Short Message (to a mobile phone) is sent after
 a length byte:

 my $msg = pack('Z*Z*CA*', $src, $dst, length($sm), $sm);

Unpacking this message can be done with the same template:

 ($src, $dst, $len, $sm) = unpack('Z*Z*CA*', $msg);

There's a subtle trap lurking in the offing: Adding another field after
 the Short Message (in variable
$sm) is all right when packing, but this
 cannot be unpacked naively:

 # pack a message
 my $msg = pack('Z*Z*CA*C', $src, $dst, length($sm), $sm, $prio);

 # unpack fails - $prio remains undefined!
 ($src, $dst, $len, $sm, $prio) = unpack('Z*Z*CA*C', $msg);

The pack code A* gobbles up all remaining bytes, and $prio remains
 undefined! Before we let
disappointment dampen the morale: Perl's got
 the trump card to make this trick too, just a little further
up the sleeve.
 Watch this:

Perl version 5.8.8 documentation - perlpacktut

Page 11http://perldoc.perl.org

 # pack a message: ASCIIZ, ASCIIZ, length/string, byte
 my $msg = pack('Z* Z* C/A* C', $src, $dst, $sm, $prio);

 # unpack
 ($src, $dst, $sm, $prio) = unpack('Z* Z* C/A* C', $msg);

Combining two pack codes with a slash (/) associates them with a single
 value from the argument
list. In pack, the length of the argument is
 taken and packed according to the first code while the
argument itself
 is added after being converted with the template code after the slash.
 This saves us
the trouble of inserting the length call, but it is in unpack where we really score: The value of the
length byte marks the
 end of the string to be taken from the buffer. Since this combination
 doesn't
make sense except when the second pack code isn't a*, A*
 or Z*, Perl won't let you.

The pack code preceding / may be anything that's fit to represent a
 number: All the numeric binary
pack codes, and even text codes such as A4 or Z*:

 # pack/unpack a string preceded by its length in ASCII
 my $buf = pack('A4/A*', "Humpty-Dumpty");
 # unpack $buf: '13 Humpty-Dumpty'
 my $txt = unpack('A4/A*', $buf);

/ is not implemented in Perls before 5.6, so if your code is required to
 work on older Perls you'll need
to unpack('Z* Z* C') to get the length,
 then use it to make a new unpack string. For example

 # pack a message: ASCIIZ, ASCIIZ, length, string, byte (5.005
compatible)
 my $msg = pack('Z* Z* C A* C', $src, $dst, length $sm, $sm, $prio);

 # unpack
 (undef, undef, $len) = unpack('Z* Z* C', $msg);
 ($src, $dst, $sm, $prio) = unpack ("Z* Z* x A$len C", $msg);

But that second unpack is rushing ahead. It isn't using a simple literal
 string for the template. So
maybe we should introduce...

Dynamic Templates
So far, we've seen literals used as templates. If the list of pack
 items doesn't have fixed length, an
expression constructing the
 template is required (whenever, for some reason, ()* cannot be used).

Here's an example: To store named string values in a way that can be
 conveniently parsed by a C
program, we create a sequence of names and
 null terminated ASCII strings, with = between the name
and the value,
 followed by an additional delimiting null byte. Here's how:

 my $env = pack('(A*A*Z*)' . keys(%Env) . 'C',
 map({ ($_, '=', $Env{$_}) } keys(%Env)), 0);

Let's examine the cogs of this byte mill, one by one. There's the map
 call, creating the items we intend
to stuff into the $env buffer:
 to each key (in $_) it adds the = separator and the hash entry value.

Each triplet is packed with the template code sequence A*A*Z* that
 is repeated according to the
number of keys. (Yes, that's what the keys
 function returns in scalar context.) To get the very last null
byte,
 we add a 0 at the end of the pack list, to be packed with C.
 (Attentive readers may have noticed
that we could have omitted the 0.)

For the reverse operation, we'll have to determine the number of items
 in the buffer before we can let
unpack rip it apart:

 my $n = $env =~ tr/\0// - 1;

Perl version 5.8.8 documentation - perlpacktut

Page 12http://perldoc.perl.org

 my %env = map(split(/=/, $_), unpack("(Z*)$n", $env));

The tr counts the null bytes. The unpack call returns a list of
 name-value pairs each of which is
taken apart in the map block.

Counting Repetitions
Rather than storing a sentinel at the end of a data item (or a list of items),
 we could precede the data
with a count. Again, we pack keys and values of
 a hash, preceding each with an unsigned short
length count, and up front
 we store the number of pairs:

 my $env = pack('S(S/A* S/A*)*', scalar keys(%Env), %Env);

This simplifies the reverse operation as the number of repetitions can be
 unpacked with the / code:

 my %env = unpack('S/(S/A* S/A*)', $env);

Note that this is one of the rare cases where you cannot use the same
 template for pack and unpack
because pack can't determine
 a repeat count for a ()-group.

Packing and Unpacking C Structures
In previous sections we have seen how to pack numbers and character
 strings. If it were not for a
couple of snags we could conclude this
 section right away with the terse remark that C structures
don't
 contain anything else, and therefore you already know all there is to it.
 Sorry, no: read on,
please.

The Alignment Pit
In the consideration of speed against memory requirements the balance
 has been tilted in favor of
faster execution. This has influenced the
 way C compilers allocate memory for structures: On
architectures
 where a 16-bit or 32-bit operand can be moved faster between places in
 memory, or to
or from a CPU register, if it is aligned at an even or multiple-of-four or even at a multiple-of eight
address, a C compiler
 will give you this speed benefit by stuffing extra bytes into structures.
 If you
don't cross the C shoreline this is not likely to cause you any
 grief (although you should care when
you design large data structures,
 or you want your code to be portable between architectures (you do
want
 that, don't you?)).

To see how this affects pack and unpack, we'll compare these two
 C structures:

 typedef struct {
 char c1;
 short s;
 char c2;
 long l;
 } gappy_t;

 typedef struct {
 long l;
 short s;
 char c1;
 char c2;
 } dense_t;

Typically, a C compiler allocates 12 bytes to a gappy_t variable, but
 requires only 8 bytes for a
dense_t. After investigating this further,
 we can draw memory maps, showing where the extra 4
bytes are hidden:

 0 +4 +8 +12

Perl version 5.8.8 documentation - perlpacktut

Page 13http://perldoc.perl.org

 +--+--+--+--+--+--+--+--+--+--+--+--+
 |c1|xx| s |c2|xx|xx|xx| l | xx = fill byte
 +--+--+--+--+--+--+--+--+--+--+--+--+
 gappy_t

 0 +4 +8
 +--+--+--+--+--+--+--+--+
 | l | h |c1|c2|
 +--+--+--+--+--+--+--+--+
 dense_t

And that's where the first quirk strikes: pack and unpack
 templates have to be stuffed with x codes
to get those extra fill bytes.

The natural question: "Why can't Perl compensate for the gaps?" warrants
 an answer. One good
reason is that C compilers might provide (non-ANSI)
 extensions permitting all sorts of fancy control
over the way structures
 are aligned, even at the level of an individual structure field. And, if
 this were
not enough, there is an insidious thing called union where
 the amount of fill bytes cannot be derived
from the alignment of the next
 item alone.

OK, so let's bite the bullet. Here's one way to get the alignment right
 by inserting template codes x,
which don't take a corresponding item from the list:

 my $gappy = pack('cxs cxxx l!', $c1, $s, $c2, $l);

Note the ! after l: We want to make sure that we pack a long
 integer as it is compiled by our C
compiler. And even now, it will only
 work for the platforms where the compiler aligns things as above.

And somebody somewhere has a platform where it doesn't.
 [Probably a Cray, where shorts, ints
and longs are all 8 bytes. :-)]

Counting bytes and watching alignments in lengthy structures is bound to be a drag. Isn't there a way
we can create the template with a simple
 program? Here's a C program that does the trick:

 #include <stdio.h>
 #include <stddef.h>

 typedef struct {
 char fc1;
 short fs;
 char fc2;
 long fl;
 } gappy_t;

 #define Pt(struct,field,tchar) \
 printf("@%d%s ", offsetof(struct,field), # tchar);

 int main() {
 Pt(gappy_t, fc1, c);
 Pt(gappy_t, fs, s!);
 Pt(gappy_t, fc2, c);
 Pt(gappy_t, fl, l!);
 printf("\n");
 }

The output line can be used as a template in a pack or unpack call:

Perl version 5.8.8 documentation - perlpacktut

Page 14http://perldoc.perl.org

 my $gappy = pack('@0c @2s! @4c @8l!', $c1, $s, $c2, $l);

Gee, yet another template code - as if we hadn't plenty. But @ saves our day by enabling us to specify
the offset from the beginning
 of the pack buffer to the next item: This is just the value
 the offsetof
macro (defined in <stddef.h>) returns when
 given a struct type and one of its field names
("member-designator" in C standardese).

Neither using offsets nor adding x's to bridge the gaps is satisfactory.
 (Just imagine what happens if
the structure changes.) What we really need
 is a way of saying "skip as many bytes as required to the
next multiple of N".
 In fluent Templatese, you say this with x!N where N is replaced by the

appropriate value. Here's the next version of our struct packaging:

 my $gappy = pack('c x!2 s c x!4 l!', $c1, $s, $c2, $l);

That's certainly better, but we still have to know how long all the
 integers are, and portability is far
away. Rather than 2,
 for instance, we want to say "however long a short is". But this can be
 done by
enclosing the appropriate pack code in brackets: [s]. So, here's
 the very best we can do:

 my $gappy = pack('c x![s] s c x![l!] l!', $c1, $s, $c2, $l);

Alignment, Take 2
I'm afraid that we're not quite through with the alignment catch yet. The
 hydra raises another ugly
head when you pack arrays of structures:

 typedef struct {
 short count;
 char glyph;
 } cell_t;

 typedef cell_t buffer_t[BUFLEN];

Where's the catch? Padding is neither required before the first field count,
 nor between this and the
next field glyph, so why can't we simply pack
 like this:

 # something goes wrong here:
 pack('s!a' x @buffer,
 map{ ($_->{count}, $_->{glyph}) } @buffer);

This packs 3*@buffer bytes, but it turns out that the size of buffer_t is four times BUFLEN! The
moral of the story is that
 the required alignment of a structure or array is propagated to the
 next higher
level where we have to consider padding at the end
 of each component as well. Thus the correct
template is:

 pack('s!ax' x @buffer,
 map{ ($_->{count}, $_->{glyph}) } @buffer);

Alignment, Take 3
And even if you take all the above into account, ANSI still lets this:

 typedef struct {
 char foo[2];
 } foo_t;

vary in size. The alignment constraint of the structure can be greater than
 any of its elements. [And if
you think that this doesn't affect anything
 common, dismember the next cellphone that you see. Many

Perl version 5.8.8 documentation - perlpacktut

Page 15http://perldoc.perl.org

have ARM cores, and
 the ARM structure rules make sizeof (foo_t) == 4]

Pointers for How to Use Them
The title of this section indicates the second problem you may run into
 sooner or later when you pack
C structures. If the function you intend
 to call expects a, say, void * value, you cannot simply take
 a
reference to a Perl variable. (Although that value certainly is a
 memory address, it's not the address
where the variable's contents are
 stored.)

Template code P promises to pack a "pointer to a fixed length string".
 Isn't this what we want? Let's
try:

 # allocate some storage and pack a pointer to it
 my $memory = "\x00" x $size;
 my $memptr = pack('P', $memory);

But wait: doesn't pack just return a sequence of bytes? How can we pass this
 string of bytes to some
C code expecting a pointer which is, after all,
 nothing but a number? The answer is simple: We have
to obtain the numeric
 address from the bytes returned by pack.

 my $ptr = unpack('L!', $memptr);

Obviously this assumes that it is possible to typecast a pointer
 to an unsigned long and vice versa,
which frequently works but should not
 be taken as a universal law. - Now that we have this pointer the
next question
 is: How can we put it to good use? We need a call to some C function
 where a pointer
is expected. The read(2) system call comes to mind:

 ssize_t read(int fd, void *buf, size_t count);

After reading perlfunc explaining how to use syscall we can write
 this Perl function copying a file to
standard output:

 require 'syscall.ph';
 sub cat($){
 my $path = shift();
 my $size = -s $path;
 my $memory = "\x00" x $size; # allocate some memory
 my $ptr = unpack('L', pack('P', $memory));
 open(F, $path) || die("$path: cannot open ($!)\n");
 my $fd = fileno(F);
 my $res = syscall(&SYS_read, fileno(F), $ptr, $size);
 print $memory;
 close(F);
 }

This is neither a specimen of simplicity nor a paragon of portability but
 it illustrates the point: We are
able to sneak behind the scenes and
 access Perl's otherwise well-guarded memory! (Important note:
Perl's syscall does not require you to construct pointers in this roundabout
 way. You simply pass a
string variable, and Perl forwards the address.)

How does unpack with P work? Imagine some pointer in the buffer
 about to be unpacked: If it isn't
the null pointer (which will smartly
 produce the undef value) we have a start address - but then what?
Perl has no way of knowing how long this "fixed length string" is, so
 it's up to you to specify the actual
size as an explicit length after P.

 my $mem = "abcdefghijklmn";
 print unpack('P5', pack('P', $mem)); # prints "abcde"

Perl version 5.8.8 documentation - perlpacktut

Page 16http://perldoc.perl.org

As a consequence, pack ignores any number or * after P.

Now that we have seen P at work, we might as well give p a whirl.
 Why do we need a second
template code for packing pointers at all? The answer lies behind the simple fact that an unpack with
p promises
 a null-terminated string starting at the address taken from the buffer,
 and that implies a
length for the data item to be returned:

 my $buf = pack('p', "abc\x00efhijklmn");
 print unpack('p', $buf); # prints "abc"

Albeit this is apt to be confusing: As a consequence of the length being
 implied by the string's length,
a number after pack code p is a repeat
 count, not a length as after P.

Using pack(..., $x) with P or p to get the address where $x is
 actually stored must be used with
circumspection. Perl's internal machinery
 considers the relation between a variable and that address
as its very own private matter and doesn't really care that we have obtained a copy. Therefore:

Do not use pack with p or P to obtain the address of variable
 that's bound to go out of scope
(and thereby freeing its memory) before you
 are done with using the memory at that address.

Be very careful with Perl operations that change the value of the
 variable. Appending
something to the variable, for instance, might require
 reallocation of its storage, leaving you
with a pointer into no-man's land.

Don't think that you can get the address of a Perl variable
 when it is stored as an integer or
double number! pack('P', $x) will
 force the variable's internal representation to string, just
as if you
 had written something like $x .= ''.

It's safe, however, to P- or p-pack a string literal, because Perl simply
 allocates an anonymous
variable.

Pack Recipes
Here are a collection of (possibly) useful canned recipes for pack
 and unpack:

 # Convert IP address for socket functions
 pack("C4", split /\./, "123.4.5.6");

 # Count the bits in a chunk of memory (e.g. a select vector)
 unpack('%32b*', $mask);

 # Determine the endianness of your system
 $is_little_endian = unpack('c', pack('s', 1));
 $is_big_endian = unpack('xc', pack('s', 1));

 # Determine the number of bits in a native integer
 $bits = unpack('%32I!', ~0);

 # Prepare argument for the nanosleep system call
 my $timespec = pack('L!L!', $secs, $nanosecs);

For a simple memory dump we unpack some bytes into just as many pairs of hex digits, and use map
to handle the traditional
 spacing - 16 bytes to a line:

 my $i;
 print map(++$i % 16 ? "$_ " : "$_\n",
 unpack('H2' x length($mem), $mem)),
 length($mem) % 16 ? "\n" : '';

Perl version 5.8.8 documentation - perlpacktut

Page 17http://perldoc.perl.org

Funnies Section
 # Pulling digits out of nowhere...
 print unpack('C', pack('x')),
 unpack('%B*', pack('A')),
 unpack('H', pack('A')),
 unpack('A', unpack('C', pack('A'))), "\n";

 # One for the road ;-)
 my $advice = pack('all u can in a van');

Authors
Simon Cozens and Wolfgang Laun.

