
Perl version 5.8.8 documentation - perlref

Page 1http://perldoc.perl.org

NAME
perlref - Perl references and nested data structures

NOTE
This is complete documentation about all aspects of references.
 For a shorter, tutorial introduction to
just the essential features,
 see perlreftut.

DESCRIPTION
Before release 5 of Perl it was difficult to represent complex data
 structures, because all references
had to be symbolic--and even then
 it was difficult to refer to a variable instead of a symbol table entry.
Perl now not only makes it easier to use symbolic references to variables,
 but also lets you have
"hard" references to any piece of data or code.
 Any scalar may hold a hard reference. Because arrays
and hashes contain
 scalars, you can now easily build arrays of arrays, arrays of hashes,
 hashes of
arrays, arrays of hashes of functions, and so on.

Hard references are smart--they keep track of reference counts for you,
 automatically freeing the
thing referred to when its reference count goes
 to zero. (Reference counts for values in self-referential
or
 cyclic data structures may not go to zero without a little help; see "Two-Phased Garbage
Collection" in perlobj for a detailed explanation.)
 If that thing happens to be an object, the object is
destructed. See perlobj for more about objects. (In a sense, everything in Perl is an
 object, but we
usually reserve the word for references to objects that
 have been officially "blessed" into a class
package.)

Symbolic references are names of variables or other objects, just as a
 symbolic link in a Unix
filesystem contains merely the name of a file.
 The *glob notation is something of a symbolic
reference. (Symbolic
 references are sometimes called "soft references", but please don't call
 them
that; references are confusing enough without useless synonyms.)

In contrast, hard references are more like hard links in a Unix file
 system: They are used to access an
underlying object without concern for
 what its (other) name is. When the word "reference" is used
without an
 adjective, as in the following paragraph, it is usually talking about a
 hard reference.

References are easy to use in Perl. There is just one overriding
 principle: Perl does no implicit
referencing or dereferencing. When a
 scalar is holding a reference, it always behaves as a simple
scalar. It
 doesn't magically start being an array or hash or subroutine; you have to
 tell it explicitly to do
so, by dereferencing it.

Making References
References can be created in several ways.

1. By using the backslash operator on a variable, subroutine, or value.
 (This works much like the
& (address-of) operator in C.) This typically creates another reference to a variable, because

there's already a reference to the variable in the symbol table. But
 the symbol table reference
might go away, and you'll still have the
 reference that the backslash returned. Here are some
examples:

 $scalarref = \$foo;
 $arrayref = \@ARGV;
 $hashref = \%ENV;
 $coderef = \&handler;
 $globref = *foo;

It isn't possible to create a true reference to an IO handle (filehandle
 or dirhandle) using the
backslash operator. The most you can get is a
 reference to a typeglob, which is actually a
complete symbol table entry.
 But see the explanation of the *foo{THING} syntax below.
However,
 you can still use type globs and globrefs as though they were IO handles.

2. A reference to an anonymous array can be created using square
 brackets:

Perl version 5.8.8 documentation - perlref

Page 2http://perldoc.perl.org

 $arrayref = [1, 2, ['a', 'b', 'c']];

Here we've created a reference to an anonymous array of three elements
 whose final element
is itself a reference to another anonymous array of three
 elements. (The multidimensional
syntax described later can be used to
 access this. For example, after the above,
$arrayref->[2][1] would have
 the value "b".)

Taking a reference to an enumerated list is not the same
 as using square brackets--instead it's
the same as creating
 a list of references!

 @list = (\$a, \@b, \%c);
 @list = \($a, @b, %c);	 # same thing!

As a special case, \(@foo) returns a list of references to the contents
 of @foo, not a
reference to @foo itself. Likewise for %foo,
 except that the key references are to copies (since
the keys are just
 strings rather than full-fledged scalars).

3. A reference to an anonymous hash can be created using curly
 brackets:

 $hashref = {
	 'Adam' => 'Eve',
	 'Clyde' => 'Bonnie',
 };

Anonymous hash and array composers like these can be intermixed freely to
 produce as
complicated a structure as you want. The multidimensional
 syntax described below works for
these too. The values above are
 literals, but variables and expressions would work just as
well, because
 assignment operators in Perl (even within local() or my()) are executable

statements, not compile-time declarations.

Because curly brackets (braces) are used for several other things
 including BLOCKs, you may
occasionally have to disambiguate braces at the
 beginning of a statement by putting a + or a
return in front so
 that Perl realizes the opening brace isn't starting a BLOCK. The economy
and
 mnemonic value of using curlies is deemed worth this occasional extra
 hassle.

For example, if you wanted a function to make a new hash and return a
 reference to it, you
have these options:

 sub hashem { { @_ } } # silently wrong
 sub hashem { +{ @_ } } # ok
 sub hashem { return { @_ } } # ok

On the other hand, if you want the other meaning, you can do this:

 sub showem { { @_ } } # ambiguous (currently ok, but may
 change)
 sub showem { {; @_ } } # ok
 sub showem { { return @_ } } # ok

The leading +{ and {; always serve to disambiguate
 the expression to mean either the HASH
reference, or the BLOCK.

4. A reference to an anonymous subroutine can be created by using sub without a subname:

 $coderef = sub { print "Boink!\n" };

Note the semicolon. Except for the code
 inside not being immediately executed, a sub {} is
not so much a
 declaration as it is an operator, like do{} or eval{}. (However, no
 matter how
many times you execute that particular line (unless you're in an eval("...")), $coderef will
still have a reference to the same
 anonymous subroutine.)

Anonymous subroutines act as closures with respect to my() variables,
 that is, variables
lexically visible within the current scope. Closure
 is a notion out of the Lisp world that says if

Perl version 5.8.8 documentation - perlref

Page 3http://perldoc.perl.org

you define an anonymous
 function in a particular lexical context, it pretends to run in that

context even when it's called outside the context.

In human terms, it's a funny way of passing arguments to a subroutine when
 you define it as
well as when you call it. It's useful for setting up
 little bits of code to run later, such as
callbacks. You can even
 do object-oriented stuff with it, though Perl already provides a
different
 mechanism to do that--see perlobj.

You might also think of closure as a way to write a subroutine
 template without using eval().
Here's a small example of how
 closures work:

 sub newprint {
	 my $x = shift;
	 return sub { my $y = shift; print "$x, $y!\n"; };
 }
 $h = newprint("Howdy");
 $g = newprint("Greetings");

 # Time passes...

 &$h("world");
 &$g("earthlings");

This prints

 Howdy, world!
 Greetings, earthlings!

Note particularly that $x continues to refer to the value passed
 into newprint() despite "my $x"
having gone out of scope by the
 time the anonymous subroutine runs. That's what a closure is
all
 about.

This applies only to lexical variables, by the way. Dynamic variables
 continue to work as they
have always worked. Closure is not something
 that most Perl programmers need trouble
themselves about to begin with.

5. References are often returned by special subroutines called constructors.
 Perl objects are just
references to a special type of object that happens to know
 which package it's associated
with. Constructors are just special
 subroutines that know how to create that association. They
do so by
 starting with an ordinary reference, and it remains an ordinary reference
 even while
it's also being an object. Constructors are often
 named new() and called indirectly:

 $objref = new Doggie (Tail => 'short', Ears => 'long');

But don't have to be:

 $objref = Doggie->new(Tail => 'short', Ears => 'long');

 use Term::Cap;
 $terminal = Term::Cap->Tgetent({ OSPEED => 9600 });

 use Tk;
 $main = MainWindow->new();
 $menubar = $main->Frame(-relief => "raised",
 -borderwidth => 2)

6. References of the appropriate type can spring into existence if you
 dereference them in a
context that assumes they exist. Because we haven't
 talked about dereferencing yet, we can't
show you any examples yet.

7. A reference can be created by using a special syntax, lovingly known as
 the *foo{THING}

Perl version 5.8.8 documentation - perlref

Page 4http://perldoc.perl.org

syntax. *foo{THING} returns a reference to the THING
 slot in *foo (which is the symbol table
entry which holds everything
 known as foo).

 $scalarref = *foo{SCALAR};
 $arrayref = *ARGV{ARRAY};
 $hashref = *ENV{HASH};
 $coderef = *handler{CODE};
 $ioref = *STDIN{IO};
 $globref = *foo{GLOB};
 $formatref = *foo{FORMAT};

All of these are self-explanatory except for *foo{IO}. It returns
 the IO handle, used for file
handles ("open" in perlfunc), sockets
 ("socket" in perlfunc and "socketpair" in perlfunc), and
directory
 handles ("opendir" in perlfunc). For compatibility with previous
 versions of Perl,
*foo{FILEHANDLE} is a synonym for *foo{IO}, though it
 is deprecated as of 5.8.0. If
deprecation warnings are in effect, it will warn
 of its use.

*foo{THING} returns undef if that particular THING hasn't been used yet,
 except in the case
of scalars. *foo{SCALAR} returns a reference to an
 anonymous scalar if $foo hasn't been
used yet. This might change in a
 future release.

*foo{IO} is an alternative to the *HANDLE mechanism given in "Typeglobs and Filehandles"
in perldata for passing filehandles
 into or out of subroutines, or storing into larger data
structures.
 Its disadvantage is that it won't create a new filehandle for you.
 Its advantage is
that you have less risk of clobbering more than
 you want to with a typeglob assignment. (It still
conflates file
 and directory handles, though.) However, if you assign the incoming
 value to a
scalar instead of a typeglob as we do in the examples
 below, there's no risk of that happening.

 splutter(*STDOUT);		 # pass the whole glob
 splutter(*STDOUT{IO});	 # pass both file and dir handles

 sub splutter {
	 my $fh = shift;
	 print $fh "her um well a hmmm\n";
 }

 $rec = get_rec(*STDIN);	 # pass the whole glob
 $rec = get_rec(*STDIN{IO}); # pass both file and dir handles

 sub get_rec {
	 my $fh = shift;
	 return scalar <$fh>;
 }

Using References
That's it for creating references. By now you're probably dying to
 know how to use references to get
back to your long-lost data. There
 are several basic methods.

1. Anywhere you'd put an identifier (or chain of identifiers) as part
 of a variable or subroutine
name, you can replace the identifier with
 a simple scalar variable containing a reference of the
correct type:

 $bar = $$scalarref;
 push(@$arrayref, $filename);
 $$arrayref[0] = "January";
 $$hashref{"KEY"} = "VALUE";
 &$coderef(1,2,3);
 print $globref "output\n";

Perl version 5.8.8 documentation - perlref

Page 5http://perldoc.perl.org

It's important to understand that we are specifically not dereferencing $arrayref[0] or
$hashref{"KEY"} there. The dereference of the
 scalar variable happens before it does any
key lookups. Anything more
 complicated than a simple scalar variable must use methods 2 or
3 below.
 However, a "simple scalar" includes an identifier that itself uses method
 1 recursively.
Therefore, the following prints "howdy".

 $refrefref = \\\"howdy";
 print $$$$refrefref;

2. Anywhere you'd put an identifier (or chain of identifiers) as part of a
 variable or subroutine
name, you can replace the identifier with a
 BLOCK returning a reference of the correct type. In
other words, the
 previous examples could be written like this:

 $bar = ${$scalarref};
 push(@{$arrayref}, $filename);
 ${$arrayref}[0] = "January";
 ${$hashref}{"KEY"} = "VALUE";
 &{$coderef}(1,2,3);
 $globref->print("output\n"); # iff IO::Handle is loaded

Admittedly, it's a little silly to use the curlies in this case, but
 the BLOCK can contain any
arbitrary expression, in particular,
 subscripted expressions:

 &{ $dispatch{$index} }(1,2,3);	 # call correct routine

Because of being able to omit the curlies for the simple case of $$x,
 people often make the
mistake of viewing the dereferencing symbols as
 proper operators, and wonder about their
precedence. If they were,
 though, you could use parentheses instead of braces. That's not the
case.
 Consider the difference below; case 0 is a short-hand version of case 1, not case 2:

 $$hashref{"KEY"} = "VALUE";	 # CASE 0
 ${$hashref}{"KEY"} = "VALUE";	 # CASE 1
 ${$hashref{"KEY"}} = "VALUE";	 # CASE 2
 ${$hashref->{"KEY"}} = "VALUE";	 # CASE 3

Case 2 is also deceptive in that you're accessing a variable
 called %hashref, not
dereferencing through $hashref to the hash
 it's presumably referencing. That would be case 3.

3. Subroutine calls and lookups of individual array elements arise often
 enough that it gets
cumbersome to use method 2. As a form of
 syntactic sugar, the examples for method 2 may
be written:

 $arrayref->[0] = "January"; # Array element
 $hashref->{"KEY"} = "VALUE"; # Hash element
 $coderef->(1,2,3); # Subroutine call

The left side of the arrow can be any expression returning a reference,
 including a previous
dereference. Note that $array[$x] is not the
 same thing as $array->[$x] here:

 $array[$x]->{"foo"}->[0] = "January";

This is one of the cases we mentioned earlier in which references could
 spring into existence
when in an lvalue context. Before this
 statement, $array[$x] may have been undefined. If
so, it's
 automatically defined with a hash reference so that we can look up {"foo"} in it.
Likewise $array[$x]->{"foo"} will automatically get
 defined with an array reference so
that we can look up [0] in it.
 This process is called autovivification.

One more thing here. The arrow is optional between brackets
 subscripts, so you can shrink
the above down to

 $array[$x]{"foo"}[0] = "January";

Perl version 5.8.8 documentation - perlref

Page 6http://perldoc.perl.org

Which, in the degenerate case of using only ordinary arrays, gives you
 multidimensional
arrays just like C's:

 $score[$x][$y][$z] += 42;

Well, okay, not entirely like C's arrays, actually. C doesn't know how
 to grow its arrays on
demand. Perl does.

4. If a reference happens to be a reference to an object, then there are
 probably methods to
access the things referred to, and you should probably
 stick to those methods unless you're in
the class package that defines the
 object's methods. In other words, be nice, and don't violate
the object's
 encapsulation without a very good reason. Perl does not enforce
 encapsulation.
We are not totalitarians here. We do expect some basic
 civility though.

Using a string or number as a reference produces a symbolic reference,
 as explained above. Using a
reference as a number produces an
 integer representing its storage location in memory. The only

useful thing to be done with this is to compare two references
 numerically to see whether they refer to
the same location.

 if ($ref1 == $ref2) { # cheap numeric compare of references
	 print "refs 1 and 2 refer to the same thing\n";
 }

Using a reference as a string produces both its referent's type,
 including any package blessing as
described in perlobj, as well
 as the numeric address expressed in hex. The ref() operator returns
 just
the type of thing the reference is pointing to, without the
 address. See "ref" in perlfunc for details and
examples of its use.

The bless() operator may be used to associate the object a reference
 points to with a package
functioning as an object class. See perlobj.

A typeglob may be dereferenced the same way a reference can, because
 the dereference syntax
always indicates the type of reference desired.
 So ${*foo} and ${\$foo} both indicate the same
scalar variable.

Here's a trick for interpolating a subroutine call into a string:

 print "My sub returned @{[mysub(1,2,3)]} that time.\n";

The way it works is that when the @{...} is seen in the double-quoted
 string, it's evaluated as a
block. The block creates a reference to an
 anonymous array containing the results of the call to
mysub(1,2,3). So
 the whole block returns a reference to an array, which is then
 dereferenced by
@{...} and stuck into the double-quoted string. This
 chicanery is also useful for arbitrary
expressions:

 print "That yields @{[$n + 5]} widgets\n";

Symbolic references
We said that references spring into existence as necessary if they are
 undefined, but we didn't say
what happens if a value used as a
 reference is already defined, but isn't a hard reference. If you
 use it
as a reference, it'll be treated as a symbolic
 reference. That is, the value of the scalar is taken to be
the name
 of a variable, rather than a direct link to a (possibly) anonymous
 value.

People frequently expect it to work like this. So it does.

 $name = "foo";
 $$name = 1;			 # Sets $foo
 ${$name} = 2;		 # Sets $foo
 ${$name x 2} = 3;		 # Sets $foofoo

Perl version 5.8.8 documentation - perlref

Page 7http://perldoc.perl.org

 $name->[0] = 4;		 # Sets $foo[0]
 @$name = ();		 # Clears @foo
 &$name();			 # Calls &foo() (as in Perl 4)
 $pack = "THAT";
 ${"${pack}::$name"} = 5;	 # Sets $THAT::foo without eval

This is powerful, and slightly dangerous, in that it's possible
 to intend (with the utmost sincerity) to use
a hard reference, and
 accidentally use a symbolic reference instead. To protect against
 that, you can
say

 use strict 'refs';

and then only hard references will be allowed for the rest of the enclosing
 block. An inner block may
countermand that with

 no strict 'refs';

Only package variables (globals, even if localized) are visible to
 symbolic references. Lexical
variables (declared with my()) aren't in
 a symbol table, and thus are invisible to this mechanism. For
example:

 local $value = 10;
 $ref = "value";
 {
	 my $value = 20;
	 print $$ref;
 }

This will still print 10, not 20. Remember that local() affects package
 variables, which are all "global"
to the package.

Not-so-symbolic references
A new feature contributing to readability in perl version 5.001 is that the
 brackets around a symbolic
reference behave more like quotes, just as they
 always have within a string. That is,

 $push = "pop on ";
 print "${push}over";

has always meant to print "pop on over", even though push is
 a reserved word. This has been
generalized to work the same outside
 of quotes, so that

 print ${push} . "over";

and even

 print ${ push } . "over";

will have the same effect. (This would have been a syntax error in
 Perl 5.000, though Perl 4 allowed it
in the spaceless form.) This
 construct is not considered to be a symbolic reference when you're
 using
strict refs:

 use strict 'refs';
 ${ bareword };	 # Okay, means $bareword.
 ${ "bareword" };	 # Error, symbolic reference.

Similarly, because of all the subscripting that is done using single
 words, we've applied the same rule

Perl version 5.8.8 documentation - perlref

Page 8http://perldoc.perl.org

to any bareword that is used for
 subscripting a hash. So now, instead of writing

 $array{ "aaa" }{ "bbb" }{ "ccc" }

you can write just

 $array{ aaa }{ bbb }{ ccc }

and not worry about whether the subscripts are reserved words. In the
 rare event that you do wish to
do something like

 $array{ shift }

you can force interpretation as a reserved word by adding anything that
 makes it more than a
bareword:

 $array{ shift() }
 $array{ +shift }
 $array{ shift @_ }

The use warnings pragma or the -w switch will warn you if it
 interprets a reserved word as a string.

But it will no longer warn you about using lowercase words, because the
 string is effectively quoted.

Pseudo-hashes: Using an array as a hash
WARNING: This section describes an experimental feature. Details may
 change without notice in
future versions.

NOTE: The current user-visible implementation of pseudo-hashes
 (the weird use of the first array
element) is deprecated starting from
 Perl 5.8.0 and will be removed in Perl 5.10.0, and the feature will
be
 implemented differently. Not only is the current interface rather ugly,
 but the current
implementation slows down normal array and hash use quite
 noticeably. The 'fields' pragma interface
will remain available.

Beginning with release 5.005 of Perl, you may use an array reference
 in some contexts that would
normally require a hash reference. This
 allows you to access array elements using symbolic names,
as if they
 were fields in a structure.

For this to work, the array must contain extra information. The first
 element of the array has to be a
hash reference that maps field names
 to array indices. Here is an example:

 $struct = [{foo => 1, bar => 2}, "FOO", "BAR"];

 $struct->{foo}; # same as $struct->[1], i.e. "FOO"
 $struct->{bar}; # same as $struct->[2], i.e. "BAR"

 keys %$struct; # will return ("foo", "bar") in some order
 values %$struct; # will return ("FOO", "BAR") in same some order

 while (my($k,$v) = each %$struct) {
 print "$k => $v\n";
 }

Perl will raise an exception if you try to access nonexistent fields.
 To avoid inconsistencies, always
use the fields::phash() function
 provided by the fields pragma.

 use fields;

Perl version 5.8.8 documentation - perlref

Page 9http://perldoc.perl.org

 $pseudohash = fields::phash(foo => "FOO", bar => "BAR");

For better performance, Perl can also do the translation from field
 names to array indices at compile
time for typed object references.
 See fields.

There are two ways to check for the existence of a key in a
 pseudo-hash. The first is to use exists().
This checks to see if the
 given field has ever been set. It acts this way to match the behavior
 of a
regular hash. For instance:

 use fields;
 $phash = fields::phash([qw(foo bar pants)], ['FOO']);
 $phash->{pants} = undef;

 print exists $phash->{foo}; # true, 'foo' was set in the declaration
 print exists $phash->{bar}; # false, 'bar' has not been used.
 print exists $phash->{pants}; # true, your 'pants' have been touched

The second is to use exists() on the hash reference sitting in the
 first array element. This checks to
see if the given key is a valid
 field in the pseudo-hash.

 print exists $phash->[0]{bar};	 # true, 'bar' is a valid field
 print exists $phash->[0]{shoes};# false, 'shoes' can't be used

delete() on a pseudo-hash element only deletes the value corresponding
 to the key, not the key itself.
To delete the key, you'll have to
 explicitly delete it from the first hash element.

 print delete $phash->{foo}; # prints $phash->[1], "FOO"
 print exists $phash->{foo}; # false
 print exists $phash->[0]{foo}; # true, key still exists
 print delete $phash->[0]{foo}; # now key is gone
 print $phash->{foo}; # runtime exception

Function Templates
As explained above, an anonymous function with access to the lexical
 variables visible when that
function was compiled, creates a closure. It
 retains access to those variables even though it doesn't
get run until
 later, such as in a signal handler or a Tk callback.

Using a closure as a function template allows us to generate many functions
 that act similarly.
Suppose you wanted functions named after the colors
 that generated HTML font changes for the
various colors:

 print "Be ", red("careful"), "with that ", green("light");

The red() and green() functions would be similar. To create these,
 we'll assign a closure to a typeglob
of the name of the function we're
 trying to build.

 @colors = qw(red blue green yellow orange purple violet);
 for my $name (@colors) {
 no strict 'refs';	 # allow symbol table manipulation
 *$name = *{uc $name} = sub { "@_" };
 }

Now all those different functions appear to exist independently. You can
 call red(), RED(), blue(),
BLUE(), green(), etc. This technique saves on
 both compile time and memory use, and is less
error-prone as well, since
 syntax checks happen at compile time. It's critical that any variables in
 the
anonymous subroutine be lexicals in order to create a proper closure.
 That's the reasons for the my

Perl version 5.8.8 documentation - perlref

Page 10http://perldoc.perl.org

on the loop iteration variable.

This is one of the only places where giving a prototype to a closure makes
 much sense. If you wanted
to impose scalar context on the arguments of
 these functions (probably not a wise idea for this
particular example),
 you could have written it this way instead:

 *$name = sub ($) { "$_[0]" };

However, since prototype checking happens at compile time, the assignment
 above happens too late
to be of much use. You could address this by
 putting the whole loop of assignments within a BEGIN
block, forcing it
 to occur during compilation.

Access to lexicals that change over type--like those in the for loop
 above--only works with closures,
not general subroutines. In the general
 case, then, named subroutines do not nest properly, although
anonymous
 ones do. Thus is because named subroutines are created (and capture any
 outer
lexicals) only once at compile time, whereas anonymous subroutines
 get to capture each time you
execute the 'sub' operator. If you are
 accustomed to using nested subroutines in other programming
languages with
 their own private variables, you'll have to work at it a bit in Perl. The
 intuitive coding of
this type of thing incurs mysterious warnings about
 "will not stay shared". For example, this won't
work:

 sub outer {
 my $x = $_[0] + 35;
 sub inner { return $x * 19 } # WRONG
 return $x + inner();
 }

A work-around is the following:

 sub outer {
 my $x = $_[0] + 35;
 local *inner = sub { return $x * 19 };
 return $x + inner();
 }

Now inner() can only be called from within outer(), because of the
 temporary assignments of the
closure (anonymous subroutine). But when
 it does, it has normal access to the lexical variable $x
from the scope
 of outer().

This has the interesting effect of creating a function local to another
 function, something not normally
supported in Perl.

WARNING
You may not (usefully) use a reference as the key to a hash. It will be
 converted into a string:

 $x{ \$a } = $a;

If you try to dereference the key, it won't do a hard dereference, and
 you won't accomplish what
you're attempting. You might want to do something
 more like

 $r = \@a;
 $x{ $r } = $r;

And then at least you can use the values(), which will be
 real refs, instead of the keys(), which won't.

The standard Tie::RefHash module provides a convenient workaround to this.

Perl version 5.8.8 documentation - perlref

Page 11http://perldoc.perl.org

SEE ALSO
Besides the obvious documents, source code can be instructive.
 Some pathological examples of the
use of references can be found
 in the t/op/ref.t regression test in the Perl source directory.

See also perldsc and perllol for how to use references to create
 complex data structures, and perltoot,
perlobj, and perlbot
 for how to use them to create objects.

