
Perl version 5.8.8 documentation - perlsub

Page 1http://perldoc.perl.org

NAME
perlsub - Perl subroutines

SYNOPSIS
To declare subroutines:

 sub NAME;			 # A "forward" declaration.
 sub NAME(PROTO);		 # ditto, but with prototypes
 sub NAME : ATTRS;		 # with attributes
 sub NAME(PROTO) : ATTRS;	 # with attributes and prototypes

 sub NAME BLOCK		 # A declaration and a definition.
 sub NAME(PROTO) BLOCK	 # ditto, but with prototypes
 sub NAME : ATTRS BLOCK	 # with attributes
 sub NAME(PROTO) : ATTRS BLOCK # with prototypes and attributes

To define an anonymous subroutine at runtime:

 $subref = sub BLOCK;		 # no proto
 $subref = sub (PROTO) BLOCK;	 # with proto
 $subref = sub : ATTRS BLOCK;	 # with attributes
 $subref = sub (PROTO) : ATTRS BLOCK; # with proto and attributes

To import subroutines:

 use MODULE qw(NAME1 NAME2 NAME3);

To call subroutines:

 NAME(LIST);	 # & is optional with parentheses.
 NAME LIST;	 # Parentheses optional if predeclared/imported.
 &NAME(LIST); # Circumvent prototypes.
 &NAME;	 # Makes current @_ visible to called subroutine.

DESCRIPTION
Like many languages, Perl provides for user-defined subroutines.
 These may be located anywhere in
the main program, loaded in from
 other files via the do, require, or use keywords, or
 generated on
the fly using eval or anonymous subroutines.
 You can even call a function indirectly using a variable
containing
 its name or a CODE reference.

The Perl model for function call and return values is simple: all
 functions are passed as parameters
one single flat list of scalars, and
 all functions likewise return to their caller one single flat list of

scalars. Any arrays or hashes in these call and return lists will
 collapse, losing their identities--but you
may always use
 pass-by-reference instead to avoid this. Both call and return lists may
 contain as
many or as few scalar elements as you'd like. (Often a
 function without an explicit return statement is
called a subroutine, but
 there's really no difference from Perl's perspective.)

Any arguments passed in show up in the array @_. Therefore, if
 you called a function with two
arguments, those would be stored in $_[0] and $_[1]. The array @_ is a local array, but its

elements are aliases for the actual scalar parameters. In particular,
 if an element $_[0] is updated,
the corresponding argument is
 updated (or an error occurs if it is not updatable). If an argument
 is an
array or hash element which did not exist when the function
 was called, that element is created only
when (and if) it is modified
 or a reference to it is taken. (Some earlier versions of Perl
 created the
element whether or not the element was assigned to.)
 Assigning to the whole array @_ removes that
aliasing, and does
 not update any arguments.

Perl version 5.8.8 documentation - perlsub

Page 2http://perldoc.perl.org

A return statement may be used to exit a subroutine, optionally
 specifying the returned value, which
will be evaluated in the
 appropriate context (list, scalar, or void) depending on the context of
 the
subroutine call. If you specify no return value, the subroutine
 returns an empty list in list context, the
undefined value in scalar
 context, or nothing in void context. If you return one or more
 aggregates
(arrays and hashes), these will be flattened together into
 one large indistinguishable list.

If no return is found and if the last statement is an expression, its
 value is returned. If the last
statement is a loop control structure
 like a foreach or a while, the returned value is unspecified.
The
 empty sub returns the empty list.

Perl does not have named formal parameters. In practice all you
 do is assign to a my() list of these.
Variables that aren't
 declared to be private are global variables. For gory details
 on creating private
variables, see Private Variables via my()
 and Temporary Values via local(). To create protected

environments for a set of functions in a separate package (and
 probably a separate file), see
"Packages" in perlmod.

Example:

 sub max {
	 my $max = shift(@_);
	 foreach $foo (@_) {
	 $max = $foo if $max < $foo;
	 }
	 return $max;
 }
 $bestday = max($mon,$tue,$wed,$thu,$fri);

Example:

 # get a line, combining continuation lines
 # that start with whitespace

 sub get_line {
	 $thisline = $lookahead; # global variables!
	 LINE: while (defined($lookahead = <STDIN>)) {
	 if ($lookahead =~ /^[\t]/) {
		 $thisline .= $lookahead;
	 }
	 else {
		 last LINE;
	 }
	 }
	 return $thisline;
 }

 $lookahead = <STDIN>;	 # get first line
 while (defined($line = get_line())) {
	 ...
 }

Assigning to a list of private variables to name your arguments:

 sub maybeset {
	 my($key, $value) = @_;
	 $Foo{$key} = $value unless $Foo{$key};
 }

Perl version 5.8.8 documentation - perlsub

Page 3http://perldoc.perl.org

Because the assignment copies the values, this also has the effect
 of turning call-by-reference into
call-by-value. Otherwise a
 function is free to do in-place modifications of @_ and change
 its caller's
values.

 upcase_in($v1, $v2); # this changes $v1 and $v2
 sub upcase_in {
	 for (@_) { tr/a-z/A-Z/ }
 }

You aren't allowed to modify constants in this way, of course. If an
 argument were actually literal and
you tried to change it, you'd take a
 (presumably fatal) exception. For example, this won't work:

 upcase_in("frederick");

It would be much safer if the upcase_in() function
 were written to return a copy of its parameters
instead
 of changing them in place:

 ($v3, $v4) = upcase($v1, $v2); # this doesn't change $v1 and $v2
 sub upcase {
	 return unless defined wantarray; # void context, do nothing
	 my @parms = @_;
	 for (@parms) { tr/a-z/A-Z/ }
 	 return wantarray ? @parms : $parms[0];
 }

Notice how this (unprototyped) function doesn't care whether it was
 passed real scalars or arrays.
Perl sees all arguments as one big,
 long, flat parameter list in @_. This is one area where
 Perl's
simple argument-passing style shines. The upcase()
 function would work perfectly well without
changing the upcase()
 definition even if we fed it things like this:

 @newlist = upcase(@list1, @list2);
 @newlist = upcase(split /:/, $var);

Do not, however, be tempted to do this:

 (@a, @b) = upcase(@list1, @list2);

Like the flattened incoming parameter list, the return list is also
 flattened on return. So all you have
managed to do here is stored
 everything in @a and made @b empty. See Pass by Reference for
alternatives.

A subroutine may be called using an explicit & prefix. The & is optional in modern Perl, as are
parentheses if the
 subroutine has been predeclared. The & is not optional
 when just naming the
subroutine, such as when it's used as
 an argument to defined() or undef(). Nor is it optional when you

want to do an indirect subroutine call with a subroutine name or
 reference using the &$subref() or
&{$subref}() constructs,
 although the $subref->() notation solves that problem.
 See perlref for
more about all that.

Subroutines may be called recursively. If a subroutine is called
 using the & form, the argument list is
optional, and if omitted,
 no @_ array is set up for the subroutine: the @_ array at the
 time of the call is
visible to subroutine instead. This is an
 efficiency mechanism that new users may wish to avoid.

 &foo(1,2,3);	 # pass three arguments
 foo(1,2,3);		 # the same

 foo();		 # pass a null list
 &foo();		 # the same

Perl version 5.8.8 documentation - perlsub

Page 4http://perldoc.perl.org

 &foo;		 # foo() get current args, like foo(@_) !!
 foo;		 # like foo() IFF sub foo predeclared, else "foo"

Not only does the & form make the argument list optional, it also
 disables any prototype checking on
arguments you do provide. This
 is partly for historical reasons, and partly for having a convenient way
to cheat if you know what you're doing. See Prototypes below.

Subroutines whose names are in all upper case are reserved to the Perl
 core, as are modules whose
names are in all lower case. A subroutine in
 all capitals is a loosely-held convention meaning it will be
called
 indirectly by the run-time system itself, usually due to a triggered event.
 Subroutines that do
special, pre-defined things include AUTOLOAD, CLONE, DESTROY plus all functions mentioned in
perltie and PerlIO::via.

The BEGIN, CHECK, INIT and END subroutines are not so much
 subroutines as named special code
blocks, of which you can have more
 than one in a package, and which you can not call explicitly. See
"BEGIN, CHECK, INIT and END" in perlmod

Private Variables via my()
Synopsis:

 my $foo;	 	 # declare $foo lexically local
 my (@wid, %get); 	 # declare list of variables local
 my $foo = "flurp";	 # declare $foo lexical, and init it
 my @oof = @bar;	 # declare @oof lexical, and init it
 my $x : Foo = $y;	 # similar, with an attribute applied

WARNING: The use of attribute lists on my declarations is still
 evolving. The current semantics and
interface are subject to change.
 See attributes and Attribute::Handlers.

The my operator declares the listed variables to be lexically
 confined to the enclosing block,
conditional (if/unless/elsif/else),
 loop (for/foreach/while/until/continue),
subroutine, eval,
 or do/require/use'd file. If more than one value is listed, the
 list must be placed
in parentheses. All listed elements must be
 legal lvalues. Only alphanumeric identifiers may be
lexically
 scoped--magical built-ins like $/ must currently be localized
 with local instead.

Unlike dynamic variables created by the local operator, lexical
 variables declared with my are totally
hidden from the outside
 world, including any called subroutines. This is true if it's the
 same subroutine
called from itself or elsewhere--every call gets
 its own copy.

This doesn't mean that a my variable declared in a statically
 enclosing lexical scope would be
invisible. Only dynamic scopes
 are cut off. For example, the bumpx() function below has access
 to
the lexical $x variable because both the my and the sub
 occurred at the same scope, presumably file
scope.

 my $x = 10;
 sub bumpx { $x++ }

An eval(), however, can see lexical variables of the scope it is
 being evaluated in, so long as the
names aren't hidden by declarations within
 the eval() itself. See perlref.

The parameter list to my() may be assigned to if desired, which allows you
 to initialize your variables.
(If no initializer is given for a
 particular variable, it is created with the undefined value.) Commonly
 this
is used to name input parameters to a subroutine. Examples:

 $arg = "fred";	 # "global" variable
 $n = cube_root(27);
 print "$arg thinks the root is $n\n";
 fred thinks the root is 3

Perl version 5.8.8 documentation - perlsub

Page 5http://perldoc.perl.org

 sub cube_root {
	 my $arg = shift; # name doesn't matter
	 $arg **= 1/3;
	 return $arg;
 }

The my is simply a modifier on something you might assign to. So when
 you do assign to variables in
its argument list, my doesn't
 change whether those variables are viewed as a scalar or an array. So

 my ($foo) = <STDIN>;		 # WRONG?
 my @FOO = <STDIN>;

both supply a list context to the right-hand side, while

 my $foo = <STDIN>;

supplies a scalar context. But the following declares only one variable:

 my $foo, $bar = 1;			 # WRONG

That has the same effect as

 my $foo;
 $bar = 1;

The declared variable is not introduced (is not visible) until after
 the current statement. Thus,

 my $x = $x;

can be used to initialize a new $x with the value of the old $x, and
 the expression

 my $x = 123 and $x == 123

is false unless the old $x happened to have the value 123.

Lexical scopes of control structures are not bounded precisely by the
 braces that delimit their
controlled blocks; control expressions are
 part of that scope, too. Thus in the loop

 while (my $line = <>) {
 $line = lc $line;
 } continue {
 print $line;
 }

the scope of $line extends from its declaration throughout the rest of
 the loop construct (including the
continue clause), but not beyond
 it. Similarly, in the conditional

 if ((my $answer = <STDIN>) =~ /^yes$/i) {
 user_agrees();
 } elsif ($answer =~ /^no$/i) {
 user_disagrees();
 } else {
	 chomp $answer;
 die "'$answer' is neither 'yes' nor 'no'";
 }

Perl version 5.8.8 documentation - perlsub

Page 6http://perldoc.perl.org

the scope of $answer extends from its declaration through the rest
 of that conditional, including any
elsif and else clauses, but not beyond it. See "Simple statements" in perlsyn for information
 on the
scope of variables in statements with modifiers.

The foreach loop defaults to scoping its index variable dynamically
 in the manner of local.
However, if the index variable is
 prefixed with the keyword my, or if there is already a lexical
 by that
name in scope, then a new lexical is created instead. Thus
 in the loop

 for my $i (1, 2, 3) {
 some_function();
 }

the scope of $i extends to the end of the loop, but not beyond it,
 rendering the value of $i inaccessible
within some_function().

Some users may wish to encourage the use of lexically scoped variables.
 As an aid to catching
implicit uses to package variables,
 which are always global, if you say

 use strict 'vars';

then any variable mentioned from there to the end of the enclosing
 block must either refer to a lexical
variable, be predeclared via our or use vars, or else must be fully qualified with the package name.
A compilation error results otherwise. An inner block may countermand
 this with no strict
'vars'.

A my has both a compile-time and a run-time effect. At compile
 time, the compiler takes notice of it.
The principal usefulness
 of this is to quiet use strict 'vars', but it is also essential
 for
generation of closures as detailed in perlref. Actual
 initialization is delayed until run time, though, so it
gets executed
 at the appropriate time, such as each time through a loop, for
 example.

Variables declared with my are not part of any package and are therefore
 never fully qualified with the
package name. In particular, you're not
 allowed to try to make a package variable (or other global)
lexical:

 my $pack::var;	 # ERROR! Illegal syntax
 my $_;		 # also illegal (currently)

In fact, a dynamic variable (also known as package or global variables)
 are still accessible using the
fully qualified :: notation even while a
 lexical of the same name is also visible:

 package main;
 local $x = 10;
 my $x = 20;
 print "$x and $::x\n";

That will print out 20 and 10.

You may declare my variables at the outermost scope of a file
 to hide any such identifiers from the
world outside that file. This
 is similar in spirit to C's static variables when they are used at
 the file level.
To do this with a subroutine requires the use of
 a closure (an anonymous function that accesses
enclosing lexicals).
 If you want to create a private subroutine that cannot be called
 from outside that
block, it can declare a lexical variable containing
 an anonymous sub reference:

 my $secret_version = '1.001-beta';
 my $secret_sub = sub { print $secret_version };
 &$secret_sub();

As long as the reference is never returned by any function within the
 module, no outside module can

Perl version 5.8.8 documentation - perlsub

Page 7http://perldoc.perl.org

see the subroutine, because its name is not in
 any package's symbol table. Remember that it's not
REALLY called $some_pack::secret_version or anything; it's just $secret_version,
 unqualified
and unqualifiable.

This does not work with object methods, however; all object methods
 have to be in the symbol table
of some package to be found. See "Function Templates" in perlref for something of a work-around to

this.

Persistent Private Variables
Just because a lexical variable is lexically (also called statically)
 scoped to its enclosing block, eval,
or do FILE, this doesn't mean that
 within a function it works like a C static. It normally works more
 like
a C auto, but with implicit garbage collection.

Unlike local variables in C or C++, Perl's lexical variables don't
 necessarily get recycled just because
their scope has exited.
 If something more permanent is still aware of the lexical, it will
 stick around. So
long as something else references a lexical, that
 lexical won't be freed--which is as it should be. You
wouldn't want
 memory being free until you were done using it, or kept around once you
 were done.
Automatic garbage collection takes care of this for you.

This means that you can pass back or save away references to lexical
 variables, whereas to return a
pointer to a C auto is a grave error.
 It also gives us a way to simulate C's function statics. Here's a

mechanism for giving a function private variables with both lexical
 scoping and a static lifetime. If you
do want to create something like
 C's static variables, just enclose the whole function in an extra block,
and put the static variable outside the function but in the block.

 {
	 my $secret_val = 0;
	 sub gimme_another {
	 return ++$secret_val;
	 }
 }
 # $secret_val now becomes unreachable by the outside
 # world, but retains its value between calls to gimme_another

If this function is being sourced in from a separate file
 via require or use, then this is probably just
fine. If it's
 all in the main program, you'll need to arrange for the my
 to be executed early, either by
putting the whole block above
 your main program, or more likely, placing merely a BEGIN
 code block
around it to make sure it gets executed before your program
 starts to run:

 BEGIN {
	 my $secret_val = 0;
	 sub gimme_another {
	 return ++$secret_val;
	 }
 }

See "BEGIN, CHECK, INIT and END" in perlmod about the
 special triggered code blocks, BEGIN,
CHECK, INIT and END.

If declared at the outermost scope (the file scope), then lexicals
 work somewhat like C's file statics.
They are available to all
 functions in that same file declared below them, but are inaccessible
 from
outside that file. This strategy is sometimes used in modules
 to create private variables that the whole
module can see.

Temporary Values via local()
WARNING: In general, you should be using my instead of local, because
 it's faster and safer.
Exceptions to this include the global punctuation
 variables, global filehandles and formats, and direct

Perl version 5.8.8 documentation - perlsub

Page 8http://perldoc.perl.org

manipulation of the
 Perl symbol table itself. local is mostly used when the current value
 of a variable
must be visible to called subroutines.

Synopsis:

 # localization of values

 local $foo;			 # make $foo dynamically local
 local (@wid, %get);		 # make list of variables local
 local $foo = "flurp";	 # make $foo dynamic, and init it
 local @oof = @bar;		 # make @oof dynamic, and init it

 local $hash{key} = "val";	 # sets a local value for this hash entry
 local ($cond ? $v1 : $v2);	 # several types of lvalues support
				 # localization

 # localization of symbols

 local *FH;			 # localize $FH, @FH, %FH, &FH ...
 local *merlyn = *randal;	 # now $merlyn is really $randal, plus
 # @merlyn is really @randal, etc
 local *merlyn = 'randal';	 # SAME THING: promote 'randal' to *randal
 local *merlyn = \$randal; # just alias $merlyn, not @merlyn etc

A local modifies its listed variables to be "local" to the
 enclosing block, eval, or do FILE--and to
any subroutine
 called from within that block. A local just gives temporary
 values to global (meaning
package) variables. It does not create
 a local variable. This is known as dynamic scoping. Lexical
scoping
 is done with my, which works more like C's auto declarations.

Some types of lvalues can be localized as well : hash and array elements
 and slices, conditionals
(provided that their result is always
 localizable), and symbolic references. As for simple variables, this

creates new, dynamically scoped values.

If more than one variable or expression is given to local, they must be
 placed in parentheses. This
operator works
 by saving the current values of those variables in its argument list on a
 hidden stack
and restoring them upon exiting the block, subroutine, or
 eval. This means that called subroutines can
also reference the local
 variable, but not the global one. The argument list may be assigned to if

desired, which allows you to initialize your local variables. (If no
 initializer is given for a particular
variable, it is created with an
 undefined value.)

Because local is a run-time operator, it gets executed each time
 through a loop. Consequently, it's
more efficient to localize your
 variables outside the loop.

Grammatical note on local()

A local is simply a modifier on an lvalue expression. When you assign to
 a localized variable, the
local doesn't change whether its list is viewed
 as a scalar or an array. So

 local($foo) = <STDIN>;
 local @FOO = <STDIN>;

both supply a list context to the right-hand side, while

 local $foo = <STDIN>;

supplies a scalar context.

Perl version 5.8.8 documentation - perlsub

Page 9http://perldoc.perl.org

Localization of special variables

If you localize a special variable, you'll be giving a new value to it,
 but its magic won't go away. That
means that all side-effects related
 to this magic still work with the localized value.

This feature allows code like this to work :

 # Read the whole contents of FILE in $slurp
 { local $/ = undef; $slurp = <FILE>; }

Note, however, that this restricts localization of some values ; for
 example, the following statement
dies, as of perl 5.9.0, with an error Modification of a read-only value attempted, because the $1
variable is
 magical and read-only :

 local $1 = 2;

Similarly, but in a way more difficult to spot, the following snippet will
 die in perl 5.9.0 :

 sub f { local $_ = "foo"; print }
 for ($1) {
	 # now $_ is aliased to $1, thus is magic and readonly
	 f();
 }

See next section for an alternative to this situation.

WARNING: Localization of tied arrays and hashes does not currently
 work as described.
 This will be
fixed in a future release of Perl; in the meantime, avoid
 code that relies on any particular behaviour of
localising tied arrays
 or hashes (localising individual elements is still okay).
 See "Localising Tied
Arrays and Hashes Is Broken" in perl58delta for more
 details.

Localization of globs

The construct

 local *name;

creates a whole new symbol table entry for the glob name in the
 current package. That means that all
variables in its glob slot ($name,
 @name, %name, &name, and the name filehandle) are dynamically
reset.

This implies, among other things, that any magic eventually carried by
 those variables is locally lost.
In other words, saying local */
 will not have any effect on the internal value of the input record

separator.

Notably, if you want to work with a brand new value of the default scalar
 $_, and avoid the potential
problem listed above about $_ previously
 carrying a magic value, you should use local *_ instead
of local $_.

Localization of elements of composite types

It's also worth taking a moment to explain what happens when you localize a member of a
composite type (i.e. an array or hash element).
 In this case, the element is localized by name. This
means that
 when the scope of the local() ends, the saved value will be
 restored to the hash
element whose key was named in the local(), or
 the array element whose index was named in the
local(). If that
 element was deleted while the local() was in effect (e.g. by a delete() from a
hash or a shift() of an array), it will spring
 back into existence, possibly extending an array and
filling in the
 skipped elements with undef. For instance, if you say

 %hash = ('This' => 'is', 'a' => 'test');

Perl version 5.8.8 documentation - perlsub

Page 10http://perldoc.perl.org

 @ary = (0..5);
 {
 local($ary[5]) = 6;
 local($hash{'a'}) = 'drill';
 while (my $e = pop(@ary)) {
 print "$e . . .\n";
 last unless $e > 3;
 }
 if (@ary) {
 $hash{'only a'} = 'test';
 delete $hash{'a'};
 }
 }
 print join(' ', map { "$_ $hash{$_}" } sort keys %hash),".\n";
 print "The array has ",scalar(@ary)," elements: ",
 join(', ', map { defined $_ ? $_ : 'undef' } @ary),"\n";

Perl will print

 6 . . .
 4 . . .
 3 . . .
 This is a test only a test.
 The array has 6 elements: 0, 1, 2, undef, undef, 5

The behavior of local() on non-existent members of composite
 types is subject to change in future.

Lvalue subroutines
WARNING: Lvalue subroutines are still experimental and the
 implementation may change in future
versions of Perl.

It is possible to return a modifiable value from a subroutine.
 To do this, you have to declare the
subroutine to return an lvalue.

 my $val;
 sub canmod : lvalue {
	 # return $val; this doesn't work, don't say "return"
	 $val;
 }
 sub nomod {
	 $val;
 }

 canmod() = 5; # assigns to $val
 nomod() = 5; # ERROR

The scalar/list context for the subroutine and for the right-hand
 side of assignment is determined as if
the subroutine call is replaced
 by a scalar. For example, consider:

 data(2,3) = get_data(3,4);

Both subroutines here are called in a scalar context, while in:

 (data(2,3)) = get_data(3,4);

and in:

Perl version 5.8.8 documentation - perlsub

Page 11http://perldoc.perl.org

 (data(2),data(3)) = get_data(3,4);

all the subroutines are called in a list context.

Lvalue subroutines are EXPERIMENTAL

They appear to be convenient, but there are several reasons to be
 circumspect.

You can't use the return keyword, you must pass out the value before
 falling out of subroutine
scope. (see comment in example above). This
 is usually not a problem, but it disallows an
explicit return out of a
 deeply nested loop, which is sometimes a nice way out.

They violate encapsulation. A normal mutator can check the supplied
 argument before setting
the attribute it is protecting, an lvalue
 subroutine never gets that chance. Consider;

 my $some_array_ref = [];	 # protected by mutators ??

 sub set_arr { 		 # normal mutator
	 my $val = shift;
	 die("expected array, you supplied ", ref $val)
	 unless ref $val eq 'ARRAY';
	 $some_array_ref = $val;
 }
 sub set_arr_lv : lvalue {	 # lvalue mutator
	 $some_array_ref;
 }

 # set_arr_lv cannot stop this !
 set_arr_lv() = { a => 1 };

Passing Symbol Table Entries (typeglobs)
WARNING: The mechanism described in this section was originally
 the only way to simulate
pass-by-reference in older versions of
 Perl. While it still works fine in modern versions, the new
reference
 mechanism is generally easier to work with. See below.

Sometimes you don't want to pass the value of an array to a subroutine
 but rather the name of it, so
that the subroutine can modify the global
 copy of it rather than working with a local copy. In perl you
can
 refer to all objects of a particular name by prefixing the name
 with a star: *foo. This is often
known as a "typeglob", because the
 star on the front can be thought of as a wildcard match for all the

funny prefix characters on variables and subroutines and such.

When evaluated, the typeglob produces a scalar value that represents
 all the objects of that name,
including any filehandle, format, or
 subroutine. When assigned to, it causes the name mentioned to
refer to
 whatever * value was assigned to it. Example:

 sub doubleary {
	 local(*someary) = @_;
	 foreach $elem (@someary) {
	 $elem *= 2;
	 }
 }
 doubleary(*foo);
 doubleary(*bar);

Scalars are already passed by reference, so you can modify
 scalar arguments without using this
mechanism by referring explicitly
 to $_[0] etc. You can modify all the elements of an array by
passing
 all the elements as scalars, but you have to use the * mechanism (or
 the equivalent
reference mechanism) to push, pop, or change the size of
 an array. It will certainly be faster to pass
the typeglob (or reference).

Perl version 5.8.8 documentation - perlsub

Page 12http://perldoc.perl.org

Even if you don't want to modify an array, this mechanism is useful for
 passing multiple arrays in a
single LIST, because normally the LIST
 mechanism will merge all the array values so that you can't
extract out
 the individual arrays. For more on typeglobs, see "Typeglobs and Filehandles" in perldata.

When to Still Use local()
Despite the existence of my, there are still three places where the local operator still shines. In fact,
in these three places, you must use local instead of my.

1. You need to give a global variable a temporary value, especially $_.

The global variables, like @ARGV or the punctuation variables, must be localized with
local(). This block reads in /etc/motd, and splits
 it up into chunks separated by lines of
equal signs, which are placed
 in @Fields.

 {
	 local @ARGV = ("/etc/motd");
 local $/ = undef;
 local $_ = <>;
	 @Fields = split /^\s*=+\s*$/;
 }

It particular, it's important to localize $_ in any routine that assigns
 to it. Look out for implicit
assignments in while conditionals.

2. You need to create a local file or directory handle or a local function.

A function that needs a filehandle of its own must use local() on a complete typeglob. This
can be used to create new symbol
 table entries:

 sub ioqueue {
 local (*READER, *WRITER); # not my!
 pipe (READER, WRITER) or die "pipe: $!";
 return (*READER, *WRITER);
 }
 ($head, $tail) = ioqueue();

See the Symbol module for a way to create anonymous symbol table
 entries.

Because assignment of a reference to a typeglob creates an alias, this
 can be used to create
what is effectively a local function, or at least,
 a local alias.

 {
 local *grow = \&shrink; # only until this block exists
 grow(); # really calls shrink()
	 move();			 # if move() grow()s, it shrink()s too
 }
 grow();			 # get the real grow() again

See "Function Templates" in perlref for more about manipulating
 functions by name in this
way.

3. You want to temporarily change just one element of an array or hash.

You can localize just one element of an aggregate. Usually this
 is done on dynamics:

 {
	 local $SIG{INT} = 'IGNORE';
	 funct();			 # uninterruptible
 }
 # interruptibility automatically restored here

But it also works on lexically declared aggregates. Prior to 5.005,
 this operation could on

Perl version 5.8.8 documentation - perlsub

Page 13http://perldoc.perl.org

occasion misbehave.

Pass by Reference
If you want to pass more than one array or hash into a function--or
 return them from it--and have them
maintain their integrity, then
 you're going to have to use an explicit pass-by-reference. Before you
 do
that, you need to understand references as detailed in perlref.
 This section may not make much
sense to you otherwise.

Here are a few simple examples. First, let's pass in several arrays
 to a function and have it pop all of
then, returning a new list
 of all their former last elements:

 @tailings = popmany (\@a, \@b, \@c, \@d);

 sub popmany {
	 my $aref;
	 my @retlist = ();
	 foreach $aref (@_) {
	 push @retlist, pop @$aref;
	 }
	 return @retlist;
 }

Here's how you might write a function that returns a
 list of keys occurring in all the hashes passed to
it:

 @common = inter(\%foo, \%bar, \%joe);
 sub inter {
	 my ($k, $href, %seen); # locals
	 foreach $href (@_) {
	 while ($k = each %$href) {
		 $seen{$k}++;
	 }
	 }
	 return grep { $seen{$_} == @_ } keys %seen;
 }

So far, we're using just the normal list return mechanism.
 What happens if you want to pass or return
a hash? Well,
 if you're using only one of them, or you don't mind them
 concatenating, then the normal
calling convention is ok, although
 a little expensive.

Where people get into trouble is here:

 (@a, @b) = func(@c, @d);
or
 (%a, %b) = func(%c, %d);

That syntax simply won't work. It sets just @a or %a and
 clears the @b or %b. Plus the function didn't
get passed
 into two separate arrays or hashes: it got one long list in @_,
 as always.

If you can arrange for everyone to deal with this through references, it's
 cleaner code, although not so
nice to look at. Here's a function that
 takes two array references as arguments, returning the two array
elements
 in order of how many elements they have in them:

 ($aref, $bref) = func(\@c, \@d);
 print "@$aref has more than @$bref\n";
 sub func {
	 my ($cref, $dref) = @_;

Perl version 5.8.8 documentation - perlsub

Page 14http://perldoc.perl.org

	 if (@$cref > @$dref) {
	 return ($cref, $dref);
	 } else {
	 return ($dref, $cref);
	 }
 }

It turns out that you can actually do this also:

 (*a, *b) = func(\@c, \@d);
 print "@a has more than @b\n";
 sub func {
	 local (*c, *d) = @_;
	 if (@c > @d) {
	 return (\@c, \@d);
	 } else {
	 return (\@d, \@c);
	 }
 }

Here we're using the typeglobs to do symbol table aliasing. It's
 a tad subtle, though, and also won't
work if you're using my
 variables, because only globals (even in disguise as locals)
 are in the
symbol table.

If you're passing around filehandles, you could usually just use the bare
 typeglob, like *STDOUT, but
typeglobs references work, too.
 For example:

 splutter(*STDOUT);
 sub splutter {
	 my $fh = shift;
	 print $fh "her um well a hmmm\n";
 }

 $rec = get_rec(*STDIN);
 sub get_rec {
	 my $fh = shift;
	 return scalar <$fh>;
 }

If you're planning on generating new filehandles, you could do this.
 Notice to pass back just the bare
*FH, not its reference.

 sub openit {
	 my $path = shift;
	 local *FH;
	 return open (FH, $path) ? *FH : undef;
 }

Prototypes
Perl supports a very limited kind of compile-time argument checking
 using function prototyping. If you
declare

 sub mypush (\@@)

then mypush() takes arguments exactly like push() does. The
 function declaration must be visible

Perl version 5.8.8 documentation - perlsub

Page 15http://perldoc.perl.org

at compile time. The prototype
 affects only interpretation of new-style calls to the function,
 where
new-style is defined as not using the & character. In
 other words, if you call it like a built-in function,
then it behaves
 like a built-in function. If you call it like an old-fashioned
 subroutine, then it behaves
like an old-fashioned subroutine. It
 naturally falls out from this rule that prototypes have no influence

on subroutine references like \&foo or on indirect subroutine
 calls like &{$subref} or
$subref->().

Method calls are not influenced by prototypes either, because the
 function to be called is
indeterminate at compile time, since
 the exact code called depends on inheritance.

Because the intent of this feature is primarily to let you define
 subroutines that work like built-in
functions, here are prototypes
 for some other functions that parse almost exactly like the

corresponding built-in.

 Declared as			 Called as

 sub mylink ($$)	 mylink $old, $new
 sub myvec ($$$)	 myvec $var, $offset, 1
 sub myindex ($$;$)	 myindex &getstring, "substr"
 sub mysyswrite ($$$;$) mysyswrite $buf, 0, length($buf) - $off, $off
 sub myreverse (@)	 myreverse $a, $b, $c
 sub myjoin ($@)	 myjoin ":", $a, $b, $c
 sub mypop (\@)	 mypop @array
 sub mysplice (\@$$@) mysplice @array, @array, 0, @pushme
 sub mykeys (\%)	 mykeys %{$hashref}
 sub myopen (*;$)	 myopen HANDLE, $name
 sub mypipe (**)	 mypipe READHANDLE, WRITEHANDLE
 sub mygrep (&@)	 mygrep { /foo/ } $a, $b, $c
 sub myrand ($)	 myrand 42
 sub mytime ()	 mytime

Any backslashed prototype character represents an actual argument
 that absolutely must start with
that character. The value passed
 as part of @_ will be a reference to the actual argument given
 in the
subroutine call, obtained by applying \ to that argument.

You can also backslash several argument types simultaneously by using
 the \[] notation:

 sub myref (\[$@%&*])

will allow calling myref() as

 myref $var
 myref @array
 myref %hash
 myref &sub
 myref *glob

and the first argument of myref() will be a reference to
 a scalar, an array, a hash, a code, or a glob.

Unbackslashed prototype characters have special meanings. Any
 unbackslashed @ or % eats all
remaining arguments, and forces
 list context. An argument represented by $ forces scalar context. An
& requires an anonymous subroutine, which, if passed as the first
 argument, does not require the sub
keyword or a subsequent comma.

A * allows the subroutine to accept a bareword, constant, scalar expression,
 typeglob, or a reference
to a typeglob in that slot. The value will be
 available to the subroutine either as a simple scalar, or (in
the latter
 two cases) as a reference to the typeglob. If you wish to always convert
 such arguments to a

Perl version 5.8.8 documentation - perlsub

Page 16http://perldoc.perl.org

typeglob reference, use Symbol::qualify_to_ref() as
 follows:

 use Symbol 'qualify_to_ref';

 sub foo (*) {
	 my $fh = qualify_to_ref(shift, caller);
	 ...
 }

A semicolon separates mandatory arguments from optional arguments.
 It is redundant before @ or %,
which gobble up everything else.

Note how the last three examples in the table above are treated
 specially by the parser. mygrep() is
parsed as a true list
 operator, myrand() is parsed as a true unary operator with unary
 precedence
the same as rand(), and mytime() is truly without
 arguments, just like time(). That is, if you say

 mytime +2;

you'll get mytime() + 2, not mytime(2), which is how it would be parsed
 without a prototype.

The interesting thing about & is that you can generate new syntax with it,
 provided it's in the initial
position:

 sub try (&@) {
	 my($try,$catch) = @_;
	 eval { &$try };
	 if ($@) {
	 local $_ = $@;
	 &$catch;
	 }
 }
 sub catch (&) { $_[0] }

 try {
	 die "phooey";
 } catch {
	 /phooey/ and print "unphooey\n";
 };

That prints "unphooey". (Yes, there are still unresolved
 issues having to do with visibility of @_. I'm
ignoring that
 question for the moment. (But note that if we make @_ lexically
 scoped, those
anonymous subroutines can act like closures... (Gee,
 is this sounding a little Lispish? (Never mind.))))

And here's a reimplementation of the Perl grep operator:

 sub mygrep (&@) {
	 my $code = shift;
	 my @result;
	 foreach $_ (@_) {
	 push(@result, $_) if &$code;
	 }
	 @result;
 }

Some folks would prefer full alphanumeric prototypes. Alphanumerics have
 been intentionally left out
of prototypes for the express purpose of
 someday in the future adding named, formal parameters.

Perl version 5.8.8 documentation - perlsub

Page 17http://perldoc.perl.org

The current
 mechanism's main goal is to let module writers provide better diagnostics
 for module
users. Larry feels the notation quite understandable to Perl
 programmers, and that it will not intrude
greatly upon the meat of the
 module, nor make it harder to read. The line noise is visually

encapsulated into a small pill that's easy to swallow.

If you try to use an alphanumeric sequence in a prototype you will
 generate an optional warning -
"Illegal character in prototype...".
 Unfortunately earlier versions of Perl allowed the prototype to be

used as long as its prefix was a valid prototype. The warning may be
 upgraded to a fatal error in a
future version of Perl once the
 majority of offending code is fixed.

It's probably best to prototype new functions, not retrofit prototyping
 into older ones. That's because
you must be especially careful about
 silent impositions of differing list versus scalar contexts. For
example,
 if you decide that a function should take just one parameter, like this:

 sub func ($) {
	 my $n = shift;
	 print "you gave me $n\n";
 }

and someone has been calling it with an array or expression
 returning a list:

 func(@foo);
 func(split /:/);

Then you've just supplied an automatic scalar in front of their
 argument, which can be more than a
bit surprising. The old @foo
 which used to hold one thing doesn't get passed in. Instead, func() now
gets passed in a 1; that is, the number of elements
 in @foo. And the split gets called in scalar
context so it
 starts scribbling on your @_ parameter list. Ouch!

This is all very powerful, of course, and should be used only in moderation
 to make the world a better
place.

Constant Functions
Functions with a prototype of () are potential candidates for
 inlining. If the result after optimization
and constant folding
 is either a constant or a lexically-scoped scalar which has no other
 references,
then it will be used in place of function calls made
 without &. Calls made using & are never inlined.
(See constant.pm for an easy way to declare most constants.)

The following functions would all be inlined:

 sub pi ()		 { 3.14159 }		 # Not exact, but close.
 sub PI ()		 { 4 * atan2 1, 1 }	 # As good as it gets,
						 # and it's inlined, too!
 sub ST_DEV ()	 { 0 }
 sub ST_INO ()	 { 1 }

 sub FLAG_FOO ()	 { 1 << 8 }
 sub FLAG_BAR ()	 { 1 << 9 }
 sub FLAG_MASK ()	 { FLAG_FOO | FLAG_BAR }

 sub OPT_BAZ ()	 { not (0x1B58 & FLAG_MASK) }

 sub N () { int(OPT_BAZ) / 3 }

 sub FOO_SET () { 1 if FLAG_MASK & FLAG_FOO }

Perl version 5.8.8 documentation - perlsub

Page 18http://perldoc.perl.org

Be aware that these will not be inlined; as they contain inner scopes,
 the constant folding doesn't
reduce them to a single constant:

 sub foo_set () { if (FLAG_MASK & FLAG_FOO) { 1 } }

 sub baz_val () {
	 if (OPT_BAZ) {
	 return 23;
	 }
	 else {
	 return 42;
	 }
 }

If you redefine a subroutine that was eligible for inlining, you'll get
 a mandatory warning. (You can use
this warning to tell whether or not a
 particular subroutine is considered constant.) The warning is

considered severe enough not to be optional because previously compiled
 invocations of the function
will still be using the old value of the
 function. If you need to be able to redefine the subroutine, you
need to
 ensure that it isn't inlined, either by dropping the () prototype
 (which changes calling
semantics, so beware) or by thwarting the
 inlining mechanism in some other way, such as

 sub not_inlined () {
 	 23 if $];
 }

Overriding Built-in Functions
Many built-in functions may be overridden, though this should be tried
 only occasionally and for good
reason. Typically this might be
 done by a package attempting to emulate missing built-in functionality

on a non-Unix system.

Overriding may be done only by importing the name from a module at
 compile time--ordinary
predeclaration isn't good enough. However, the use subs pragma lets you, in effect, predeclare
subs
 via the import syntax, and these names may then override built-in ones:

 use subs 'chdir', 'chroot', 'chmod', 'chown';
 chdir $somewhere;
 sub chdir { ... }

To unambiguously refer to the built-in form, precede the
 built-in name with the special package
qualifier CORE::. For example,
 saying CORE::open() always refers to the built-in open(), even
 if
the current package has imported some other subroutine called &open() from elsewhere. Even
though it looks like a regular
 function call, it isn't: you can't take a reference to it, such as
 the incorrect
\&CORE::open might appear to produce.

Library modules should not in general export built-in names like open
 or chdir as part of their default
@EXPORT list, because these may
 sneak into someone else's namespace and change the semantics
unexpectedly.
 Instead, if the module adds that name to @EXPORT_OK, then it's
 possible for a user to
import the name explicitly, but not implicitly.
 That is, they could say

 use Module 'open';

and it would import the open override. But if they said

 use Module;

they would get the default imports without overrides.

Perl version 5.8.8 documentation - perlsub

Page 19http://perldoc.perl.org

The foregoing mechanism for overriding built-in is restricted, quite
 deliberately, to the package that
requests the import. There is a second
 method that is sometimes applicable when you wish to
override a built-in
 everywhere, without regard to namespace boundaries. This is achieved by

importing a sub into the special namespace CORE::GLOBAL::. Here is an
 example that quite
brazenly replaces the glob operator with something
 that understands regular expressions.

 package REGlob;
 require Exporter;
 @ISA = 'Exporter';
 @EXPORT_OK = 'glob';

 sub import {
	 my $pkg = shift;
	 return unless @_;
	 my $sym = shift;
	 my $where = ($sym =~ s/^GLOBAL_// ? 'CORE::GLOBAL' : caller(0));
	 $pkg->export($where, $sym, @_);
 }

 sub glob {
	 my $pat = shift;
	 my @got;
	 local *D;
	 if (opendir D, '.') {
	 @got = grep /$pat/, readdir D;
	 closedir D;
	 }
	 return @got;
 }
 1;

And here's how it could be (ab)used:

 #use REGlob 'GLOBAL_glob';	 # override glob() in ALL namespaces
 package Foo;
 use REGlob 'glob';		 # override glob() in Foo:: only
 print for <^[a-z_]+\.pm\$>;	 # show all pragmatic modules

The initial comment shows a contrived, even dangerous example.
 By overriding glob globally, you
would be forcing the new (and
 subversive) behavior for the glob operator for every namespace,

without the complete cognizance or cooperation of the modules that own
 those namespaces.
Naturally, this should be done with extreme caution--if
 it must be done at all.

The REGlob example above does not implement all the support needed to
 cleanly override perl's
glob operator. The built-in glob has
 different behaviors depending on whether it appears in a scalar
or list
 context, but our REGlob doesn't. Indeed, many perl built-in have such
 context sensitive
behaviors, and these must be adequately supported by
 a properly written override. For a fully
functional example of overriding glob, study the implementation of File::DosGlob in the standard

library.

When you override a built-in, your replacement should be consistent (if
 possible) with the built-in
native syntax. You can achieve this by using
 a suitable prototype. To get the prototype of an
overridable built-in,
 use the prototype function with an argument of "CORE::builtin_name"
 (see
"prototype" in perlfunc).

Note however that some built-ins can't have their syntax expressed by a
 prototype (such as system

Perl version 5.8.8 documentation - perlsub

Page 20http://perldoc.perl.org

or chomp). If you override them you won't
 be able to fully mimic their original syntax.

The built-ins do, require and glob can also be overridden, but due
 to special magic, their original
syntax is preserved, and you don't have
 to define a prototype for their replacements. (You can't
override the do BLOCK syntax, though).

require has special additional dark magic: if you invoke your require replacement as require
Foo::Bar, it will actually receive
 the argument "Foo/Bar.pm" in @_. See "require" in perlfunc.

And, as you'll have noticed from the previous example, if you override glob, the <*> glob operator is
overridden as well.

In a similar fashion, overriding the readline function also overrides
 the equivalent I/O operator
<FILEHANDLE>.

Finally, some built-ins (e.g. exists or grep) can't be overridden.

Autoloading
If you call a subroutine that is undefined, you would ordinarily
 get an immediate, fatal error
complaining that the subroutine doesn't
 exist. (Likewise for subroutines being used as methods, when
the
 method doesn't exist in any base class of the class's package.)
 However, if an AUTOLOAD
subroutine is defined in the package or
 packages used to locate the original subroutine, then that
AUTOLOAD subroutine is called with the arguments that would have
 been passed to the original
subroutine. The fully qualified name
 of the original subroutine magically appears in the global
$AUTOLOAD
 variable of the same package as the AUTOLOAD routine. The name
 is not passed as an
ordinary argument because, er, well, just
 because, that's why...

Many AUTOLOAD routines load in a definition for the requested
 subroutine using eval(), then execute
that subroutine using a special
 form of goto() that erases the stack frame of the AUTOLOAD routine

without a trace. (See the source to the standard module documented
 in AutoLoader, for example.) But
an AUTOLOAD routine can
 also just emulate the routine and never define it. For example,
 let's pretend
that a function that wasn't defined should just invoke system with those arguments. All you'd do is:

 sub AUTOLOAD {
	 my $program = $AUTOLOAD;
	 $program =~ s/.*:://;
	 system($program, @_);
 }
 date();
 who('am', 'i');
 ls('-l');

In fact, if you predeclare functions you want to call that way, you don't
 even need parentheses:

 use subs qw(date who ls);
 date;
 who "am", "i";
 ls -l;

A more complete example of this is the standard Shell module, which
 can treat undefined subroutine
calls as calls to external programs.

Mechanisms are available to help modules writers split their modules
 into autoloadable files. See the
standard AutoLoader module
 described in AutoLoader and in AutoSplit, the standard
 SelfLoader
modules in SelfLoader, and the document on adding C
 functions to Perl code in perlxs.

Perl version 5.8.8 documentation - perlsub

Page 21http://perldoc.perl.org

Subroutine Attributes
A subroutine declaration or definition may have a list of attributes
 associated with it. If such an
attribute list is present, it is
 broken up at space or colon boundaries and treated as though a use
attributes had been seen. See attributes for details
 about what attributes are currently supported.

Unlike the limitation with the obsolescent use attrs, the sub : ATTRLIST syntax works to
associate the attributes with
 a pre-declaration, and not just with a subroutine definition.

The attributes must be valid as simple identifier names (without any
 punctuation other than the '_'
character). They may have a parameter
 list appended, which is only checked for whether its
parentheses ('(',')')
 nest properly.

Examples of valid syntax (even though the attributes are unknown):

 sub fnord (&\%) : switch(10,foo(7,3)) : expensive;
 sub plugh () : Ugly('\(") :Bad;
 sub xyzzy : _5x5 { ... }

Examples of invalid syntax:

 sub fnord : switch(10,foo(); # ()-string not balanced
 sub snoid : Ugly('(');	 # ()-string not balanced
 sub xyzzy : 5x5;		 # "5x5" not a valid identifier
 sub plugh : Y2::north;	 # "Y2::north" not a simple identifier
 sub snurt : foo + bar;	 # "+" not a colon or space

The attribute list is passed as a list of constant strings to the code
 which associates them with the
subroutine. In particular, the second example
 of valid syntax above currently looks like this in terms of
how it's
 parsed and invoked:

 use attributes __PACKAGE__, \&plugh, q[Ugly('\(")], 'Bad';

For further details on attribute lists and their manipulation,
 see attributes and Attribute::Handlers.

SEE ALSO
See "Function Templates" in perlref for more about references and closures.
 See perlxs if you'd like to
learn about calling C subroutines from Perl. See perlembed if you'd like to learn about calling Perl
subroutines from C. See perlmod to learn about bundling up your functions in separate files.
 See
perlmodlib to learn what library modules come standard on your system.
 See perltoot to learn how to
make object method calls.

