
Perl version 5.8.8 documentation - perlsyn

Page 1http://perldoc.perl.org

NAME
perlsyn - Perl syntax

DESCRIPTION
A Perl program consists of a sequence of declarations and statements
 which run from the top to the
bottom. Loops, subroutines and other
 control structures allow you to jump around within the code.

Perl is a free-form language, you can format and indent it however
 you like. Whitespace mostly
serves to separate tokens, unlike
 languages like Python where it is an important part of the syntax.

Many of Perl's syntactic elements are optional. Rather than
 requiring you to put parentheses around
every function call and
 declare every variable, you can often leave such explicit elements off
 and Perl
will figure out what you meant. This is known as Do What I
 Mean, abbreviated DWIM. It allows
programmers to be lazy and to
 code in a style with which they are comfortable.

Perl borrows syntax and concepts from many languages: awk, sed, C,
 Bourne Shell, Smalltalk, Lisp
and even English. Other
 languages have borrowed syntax from Perl, particularly its regular

expression extensions. So if you have programmed in another language
 you will see familiar pieces in
Perl. They often work the same, but
 see perltrap for information about how they differ.

Declarations
The only things you need to declare in Perl are report formats and
 subroutines (and sometimes not
even subroutines). A variable holds
 the undefined value (undef) until it has been assigned a defined

value, which is anything other than undef. When used as a number, undef is treated as 0; when
used as a string, it is treated as
 the empty string, ""; and when used as a reference that isn't being

assigned to, it is treated as an error. If you enable warnings,
 you'll be notified of an uninitialized value
whenever you treat undef as a string or a number. Well, usually. Boolean contexts,
 such as:

 my $a;
 if ($a) {}

are exempt from warnings (because they care about truth rather than
 definedness). Operators such
as ++, --, +=, -=, and .=, that operate on undefined left values such as:

 my $a;
 $a++;

are also always exempt from such warnings.

A declaration can be put anywhere a statement can, but has no effect on
 the execution of the primary
sequence of statements--declarations all
 take effect at compile time. Typically all the declarations are
put at
 the beginning or the end of the script. However, if you're using
 lexically-scoped private variables
created with my(), you'll
 have to make sure
 your format or subroutine definition is within the same
block scope
 as the my if you expect to be able to access those private variables.

Declaring a subroutine allows a subroutine name to be used as if it were a
 list operator from that point
forward in the program. You can declare a
 subroutine without defining it by saying sub name, thus:

 sub myname;
 $me = myname $0 		 or die "can't get myname";

Note that myname() functions as a list operator, not as a unary operator;
 so be careful to use or
instead of || in this case. However, if
 you were to declare the subroutine as sub myname ($), then
myname would function as a unary operator, so either or or || would work.

Subroutines declarations can also be loaded up with the require statement
 or both loaded and
imported into your namespace with a use statement.
 See perlmod for details on this.

Perl version 5.8.8 documentation - perlsyn

Page 2http://perldoc.perl.org

A statement sequence may contain declarations of lexically-scoped
 variables, but apart from
declaring a variable name, the declaration acts
 like an ordinary statement, and is elaborated within
the sequence of
 statements as if it were an ordinary statement. That means it actually
 has both
compile-time and run-time effects.

Comments
Text from a "#" character until the end of the line is a comment,
 and is ignored. Exceptions include
"#" inside a string or regular
 expression.

Simple Statements
The only kind of simple statement is an expression evaluated for its
 side effects. Every simple
statement must be terminated with a
 semicolon, unless it is the final statement in a block, in which
case
 the semicolon is optional. (A semicolon is still encouraged if the
 block takes up more than one
line, because you may eventually add
 another line.) Note that there are some operators like eval {}
and do {} that look like compound statements, but aren't (they're just
 TERMs in an expression), and
thus need an explicit termination if used
 as the last item in a statement.

Truth and Falsehood
The number 0, the strings '0' and '', the empty list (), and undef are all false in a boolean
context. All other values are true.
 Negation of a true value by ! or not returns a special false value.

When evaluated as a string it is treated as '', but as a number, it
 is treated as 0.

Statement Modifiers
Any simple statement may optionally be followed by a SINGLE modifier,
 just before the terminating
semicolon (or block ending). The possible
 modifiers are:

 if EXPR
 unless EXPR
 while EXPR
 until EXPR
 foreach LIST

The EXPR following the modifier is referred to as the "condition".
 Its truth or falsehood determines how
the modifier will behave.

if executes the statement once if and only if the condition is
 true. unless is the opposite, it executes
the statement unless
 the condition is true (i.e., if the condition is false).

 print "Basset hounds got long ears" if length $ear >= 10;
 go_outside() and play() unless $is_raining;

The foreach modifier is an iterator: it executes the statement once
 for each item in the LIST (with $_
aliased to each item in turn).

 print "Hello $_!\n" foreach qw(world Dolly nurse);

while repeats the statement while the condition is true. until does the opposite, it repeats the
statement until the
 condition is true (or while the condition is false):

 # Both of these count from 0 to 10.
 print $i++ while $i <= 10;
 print $j++ until $j > 10;

The while and until modifiers have the usual "while loop"
 semantics (conditional evaluated first),
except when applied to a do-BLOCK (or to the deprecated do-SUBROUTINE statement), in
 which
case the block executes once before the conditional is
 evaluated. This is so that you can write loops

Perl version 5.8.8 documentation - perlsyn

Page 3http://perldoc.perl.org

like: do {
	 $line = <STDIN>;
	 ...
 } until $line eq ".\n";

See "do" in perlfunc. Note also that the loop control statements described
 later will NOT work in this
construct, because modifiers don't take
 loop labels. Sorry. You can always put another block inside of
it
 (for next) or around it (for last) to do that sort of thing.
 For next, just double the braces:

 do {{
	 next if $x == $y;
	 # do something here
 }} until $x++ > $z;

For last, you have to be more elaborate:

 LOOP: {
	 do {
		 last if $x = $y**2;
		 # do something here
	 } while $x++ <= $z;
 }

NOTE: The behaviour of a my statement modified with a statement
 modifier conditional or loop
construct (e.g. my $x if ...) is undefined. The value of the my variable may be undef, any

previously assigned value, or possibly anything else. Don't rely on
 it. Future versions of perl might do
something different from the
 version of perl you try it out on. Here be dragons.

Compound Statements
In Perl, a sequence of statements that defines a scope is called a block.
 Sometimes a block is
delimited by the file containing it (in the case
 of a required file, or the program as a whole), and
sometimes a block
 is delimited by the extent of a string (in the case of an eval).

But generally, a block is delimited by curly brackets, also known as braces.
 We will call this syntactic
construct a BLOCK.

The following compound statements may be used to control flow:

 if (EXPR) BLOCK
 if (EXPR) BLOCK else BLOCK
 if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK
 LABEL while (EXPR) BLOCK
 LABEL while (EXPR) BLOCK continue BLOCK
 LABEL until (EXPR) BLOCK
 LABEL until (EXPR) BLOCK continue BLOCK
 LABEL for (EXPR; EXPR; EXPR) BLOCK
 LABEL foreach VAR (LIST) BLOCK
 LABEL foreach VAR (LIST) BLOCK continue BLOCK
 LABEL BLOCK continue BLOCK

Note that, unlike C and Pascal, these are defined in terms of BLOCKs,
 not statements. This means
that the curly brackets are required--no
 dangling statements allowed. If you want to write conditionals
without
 curly brackets there are several other ways to do it. The following
 all do the same thing:

 if (!open(FOO)) { die "Can't open $FOO: $!"; }
 die "Can't open $FOO: $!" unless open(FOO);
 open(FOO) or die "Can't open $FOO: $!";	 # FOO or bust!

Perl version 5.8.8 documentation - perlsyn

Page 4http://perldoc.perl.org

 open(FOO) ? 'hi mom' : die "Can't open $FOO: $!";
			 # a bit exotic, that last one

The if statement is straightforward. Because BLOCKs are always
 bounded by curly brackets, there
is never any ambiguity about which if an else goes with. If you use unless in place of if,
 the
sense of the test is reversed.

The while statement executes the block as long as the expression is
 true (does not evaluate to the
null string "" or 0 or "0").
 The until statement executes the block as long as the expression is

false.
 The LABEL is optional, and if present, consists of an identifier followed
 by a colon. The LABEL
identifies the loop for the loop control
 statements next, last, and redo.
 If the LABEL is omitted, the
loop control statement
 refers to the innermost enclosing loop. This may include dynamically
 looking
back your call-stack at run time to find the LABEL. Such
 desperate behavior triggers a warning if you
use the use warnings
 pragma or the -w flag.

If there is a continue BLOCK, it is always executed just before the
 conditional is about to be
evaluated again. Thus it can be used to
 increment a loop variable, even when the loop has been
continued via
 the next statement.

Loop Control
The next command starts the next iteration of the loop:

 LINE: while (<STDIN>) {
	 next LINE if /^#/;	 # discard comments
	 ...
 }

The last command immediately exits the loop in question. The continue block, if any, is not
executed:

 LINE: while (<STDIN>) {
	 last LINE if /^$/;	 # exit when done with header
	 ...
 }

The redo command restarts the loop block without evaluating the
 conditional again. The continue
block, if any, is not executed.
 This command is normally used by programs that want to lie to
themselves
 about what was just input.

For example, when processing a file like /etc/termcap.
 If your input lines might end in backslashes to
indicate continuation, you
 want to skip ahead and get the next record.

 while (<>) {
	 chomp;
	 if (s/\\$//) {
	 $_ .= <>;
	 redo unless eof();
	 }
	 # now process $_
 }

which is Perl short-hand for the more explicitly written version:

 LINE: while (defined($line = <ARGV>)) {
	 chomp($line);
	 if ($line =~ s/\\$//) {
	 $line .= <ARGV>;

Perl version 5.8.8 documentation - perlsyn

Page 5http://perldoc.perl.org

	 redo LINE unless eof(); # not eof(ARGV)!
	 }
	 # now process $line
 }

Note that if there were a continue block on the above code, it would
 get executed only on lines
discarded by the regex (since redo skips the
 continue block). A continue block is often used to reset
line counters
 or ?pat? one-time matches:

 # inspired by :1,$g/fred/s//WILMA/
 while (<>) {
	 ?(fred)? && s//WILMA $1 WILMA/;
	 ?(barney)? && s//BETTY $1 BETTY/;
	 ?(homer)? && s//MARGE $1 MARGE/;
 } continue {
	 print "$ARGV $.: $_";
	 close ARGV if eof();		 # reset $.
	 reset	 if eof();		 # reset ?pat?
 }

If the word while is replaced by the word until, the sense of the
 test is reversed, but the
conditional is still tested before the first
 iteration.

The loop control statements don't work in an if or unless, since
 they aren't loops. You can double
the braces to make them such, though.

 if (/pattern/) {{
	 last if /fred/;
	 next if /barney/; # same effect as "last", but doesn't document as well
	 # do something here
 }}

This is caused by the fact that a block by itself acts as a loop that
 executes once, see Basic BLOCKs
and Switch Statements.

The form while/if BLOCK BLOCK, available in Perl 4, is no longer
 available. Replace any
occurrence of if BLOCK by if (do BLOCK).

For Loops
Perl's C-style for loop works like the corresponding while loop;
 that means that this:

 for ($i = 1; $i < 10; $i++) {
	 ...
 }

is the same as this:

 $i = 1;
 while ($i < 10) {
	 ...
 } continue {
	 $i++;
 }

There is one minor difference: if variables are declared with my
 in the initialization section of the for,
the lexical scope of
 those variables is exactly the for loop (the body of the loop
 and the control

Perl version 5.8.8 documentation - perlsyn

Page 6http://perldoc.perl.org

sections).

Besides the normal array index looping, for can lend itself
 to many other interesting applications.
Here's one that avoids the
 problem you get into if you explicitly test for end-of-file on
 an interactive file
descriptor causing your program to appear to
 hang.

 $on_a_tty = -t STDIN && -t STDOUT;
 sub prompt { print "yes? " if $on_a_tty }
 for (prompt(); <STDIN>; prompt()) {
	 # do something
 }

Using readline (or the operator form, <EXPR>) as the
 conditional of a for loop is shorthand for the
following. This
 behaviour is the same as a while loop conditional.

 for (prompt(); defined($_ = <STDIN>); prompt()) {
 # do something
 }

Foreach Loops
The foreach loop iterates over a normal list value and sets the
 variable VAR to be each element of
the list in turn. If the variable
 is preceded with the keyword my, then it is lexically scoped, and
 is
therefore visible only within the loop. Otherwise, the variable is
 implicitly local to the loop and regains
its former value upon exiting
 the loop. If the variable was previously declared with my, it uses
 that
variable instead of the global one, but it's still localized to
 the loop. This implicit localisation occurs
only in a foreach
 loop.

The foreach keyword is actually a synonym for the for keyword, so
 you can use foreach for
readability or for for brevity. (Or because
 the Bourne shell is more familiar to you than csh, so writing
for
 comes more naturally.) If VAR is omitted, $_ is set to each value.

If any element of LIST is an lvalue, you can modify it by modifying
 VAR inside the loop. Conversely, if
any element of LIST is NOT an
 lvalue, any attempt to modify that element will fail. In other words,
 the
foreach loop index variable is an implicit alias for each item
 in the list that you're looping over.

If any part of LIST is an array, foreach will get very confused if
 you add or remove elements within
the loop body, for example with splice. So don't do that.

foreach probably won't do what you expect if VAR is a tied or other
 special variable. Don't do that
either.

Examples:

 for (@ary) { s/foo/bar/ }

 for my $elem (@elements) {
	 $elem *= 2;
 }

 for $count (10,9,8,7,6,5,4,3,2,1,'BOOM') {
	 print $count, "\n"; sleep(1);
 }

 for (1..15) { print "Merry Christmas\n"; }

 foreach $item (split(/:[\\\n:]*/, $ENV{TERMCAP})) {
	 print "Item: $item\n";

Perl version 5.8.8 documentation - perlsyn

Page 7http://perldoc.perl.org

 }

Here's how a C programmer might code up a particular algorithm in Perl:

 for (my $i = 0; $i < @ary1; $i++) {
	 for (my $j = 0; $j < @ary2; $j++) {
	 if ($ary1[$i] > $ary2[$j]) {
		 last; # can't go to outer :-(
	 }
	 $ary1[$i] += $ary2[$j];
	 }
	 # this is where that last takes me
 }

Whereas here's how a Perl programmer more comfortable with the idiom might
 do it:

 OUTER: for my $wid (@ary1) {
 INNER: for my $jet (@ary2) {
		 next OUTER if $wid > $jet;
		 $wid += $jet;
	 }
	 }

See how much easier this is? It's cleaner, safer, and faster. It's
 cleaner because it's less noisy. It's
safer because if code gets added
 between the inner and outer loops later on, the new code won't be

accidentally executed. The next explicitly iterates the other loop
 rather than merely terminating the
inner one. And it's faster because
 Perl executes a foreach statement more rapidly than it would the

equivalent for loop.

Basic BLOCKs and Switch Statements
A BLOCK by itself (labeled or not) is semantically equivalent to a
 loop that executes once. Thus you
can use any of the loop control
 statements in it to leave or restart the block. (Note that this is NOT
true in eval{}, sub{}, or contrary to popular belief do{} blocks, which do NOT count as loops.) The
continue
 block is optional.

The BLOCK construct is particularly nice for doing case
 structures.

 SWITCH: {
	 if (/^abc/) { $abc = 1; last SWITCH; }
	 if (/^def/) { $def = 1; last SWITCH; }
	 if (/^xyz/) { $xyz = 1; last SWITCH; }
	 $nothing = 1;
 }

There is no official switch statement in Perl, because there are
 already several ways to write the
equivalent.

However, starting from Perl 5.8 to get switch and case one can use
 the Switch extension and say:

	 use Switch;

after which one has switch and case. It is not as fast as it could be
 because it's not really part of the
language (it's done using source
 filters) but it is available, and it's very flexible.

In addition to the above BLOCK construct, you could write

 SWITCH: {

Perl version 5.8.8 documentation - perlsyn

Page 8http://perldoc.perl.org

	 $abc = 1, last SWITCH if /^abc/;
	 $def = 1, last SWITCH if /^def/;
	 $xyz = 1, last SWITCH if /^xyz/;
	 $nothing = 1;
 }

(That's actually not as strange as it looks once you realize that you can
 use loop control "operators"
within an expression. That's just the binary
 comma operator in scalar context. See "Comma Operator"
in perlop.)

or

 SWITCH: {
	 /^abc/ && do { $abc = 1; last SWITCH; };
	 /^def/ && do { $def = 1; last SWITCH; };
	 /^xyz/ && do { $xyz = 1; last SWITCH; };
	 $nothing = 1;
 }

or formatted so it stands out more as a "proper" switch statement:

 SWITCH: {
	 /^abc/ 	 && do {
			 $abc = 1;
			 last SWITCH;
		 };

	 /^def/ 	 && do {
			 $def = 1;
			 last SWITCH;
		 };

	 /^xyz/ 	 && do {
			 $xyz = 1;
			 last SWITCH;
		 };
	 $nothing = 1;
 }

or

 SWITCH: {
	 /^abc/ and $abc = 1, last SWITCH;
	 /^def/ and $def = 1, last SWITCH;
	 /^xyz/ and $xyz = 1, last SWITCH;
	 $nothing = 1;
 }

or even, horrors,

 if (/^abc/)
	 { $abc = 1 }
 elsif (/^def/)
	 { $def = 1 }
 elsif (/^xyz/)
	 { $xyz = 1 }

Perl version 5.8.8 documentation - perlsyn

Page 9http://perldoc.perl.org

 else
	 { $nothing = 1 }

A common idiom for a switch statement is to use foreach's aliasing to make
 a temporary
assignment to $_ for convenient matching:

 SWITCH: for ($where) {
		 /In Card Names/ && do { push @flags, '-e'; last; };
		 /Anywhere/ && do { push @flags, '-h'; last; };
		 /In Rulings/ && do { last; };
		 die "unknown value for form variable where: `$where'";
	 }

Another interesting approach to a switch statement is arrange
 for a do block to return the proper
value:

 $amode = do {
	 if ($flag & O_RDONLY) { "r" }	 # XXX: isn't this 0?
	 elsif ($flag & O_WRONLY) { ($flag & O_APPEND) ? "a" : "w" }
	 elsif ($flag & O_RDWR) {
	 if ($flag & O_CREAT) { "w+" }
	 else { ($flag & O_APPEND) ? "a+" : "r+" }
	 }
 };

Or

 print do {
 ($flags & O_WRONLY) ? "write-only" :
 ($flags & O_RDWR) ? "read-write" :
 "read-only";
 };

Or if you are certain that all the && clauses are true, you can use
 something like this, which "switches"
on the value of the HTTP_USER_AGENT environment variable.

 #!/usr/bin/perl
 # pick out jargon file page based on browser
 $dir = 'http://www.wins.uva.nl/~mes/jargon';
 for ($ENV{HTTP_USER_AGENT}) {
	 $page = /Mac/ && 'm/Macintrash.html'
		 || /Win(dows)?NT/ && 'e/evilandrude.html'
		 || /Win|MSIE|WebTV/ && 'm/MicroslothWindows.html'
		 || /Linux/ && 'l/Linux.html'
		 || /HP-UX/ && 'h/HP-SUX.html'
		 || /SunOS/ && 's/ScumOS.html'
		 || 'a/AppendixB.html';
 }
 print "Location: $dir/$page\015\012\015\012";

That kind of switch statement only works when you know the && clauses
 will be true. If you don't, the
previous ?: example should be used.

You might also consider writing a hash of subroutine references
 instead of synthesizing a switch
statement.

Perl version 5.8.8 documentation - perlsyn

Page 10http://perldoc.perl.org

Goto
Although not for the faint of heart, Perl does support a goto
 statement. There are three forms: goto
-LABEL, goto-EXPR, and goto-&NAME. A loop's LABEL is not actually a valid target for
 a goto; it's
just the name of the loop.

The goto-LABEL form finds the statement labeled with LABEL and resumes
 execution there. It may
not be used to go into any construct that
 requires initialization, such as a subroutine or a foreach
loop. It
 also can't be used to go into a construct that is optimized away. It
 can be used to go almost
anywhere else within the dynamic scope,
 including out of subroutines, but it's usually better to use
some other
 construct such as last or die. The author of Perl has never felt the
 need to use this
form of goto (in Perl, that is--C is another matter).

The goto-EXPR form expects a label name, whose scope will be resolved
 dynamically. This allows
for computed gotos per FORTRAN, but isn't
 necessarily recommended if you're optimizing for
maintainability:

 goto(("FOO", "BAR", "GLARCH")[$i]);

The goto-&NAME form is highly magical, and substitutes a call to the
 named subroutine for the
currently running subroutine. This is used by AUTOLOAD() subroutines that wish to load another
subroutine and then
 pretend that the other subroutine had been called in the first place
 (except that
any modifications to @_ in the current subroutine are
 propagated to the other subroutine.) After the
goto, not even caller()
 will be able to tell that this routine was called first.

In almost all cases like this, it's usually a far, far better idea to use the
 structured control flow
mechanisms of next, last, or redo instead of
 resorting to a goto. For certain applications, the
catch and throw pair of eval{} and die() for exception processing can also be a prudent approach.

PODs: Embedded Documentation
Perl has a mechanism for intermixing documentation with source code.
 While it's expecting the
beginning of a new statement, if the compiler
 encounters a line that begins with an equal sign and a
word, like this

 =head1 Here There Be Pods!

Then that text and all remaining text up through and including a line
 beginning with =cut will be
ignored. The format of the intervening
 text is described in perlpod.

This allows you to intermix your source code
 and your documentation text freely, as in

 =item snazzle($)

 The snazzle() function will behave in the most spectacular
 form that you can possibly imagine, not even excepting
 cybernetic pyrotechnics.

 =cut back to the compiler, nuff of this pod stuff!

 sub snazzle($) {
	 my $thingie = shift;
	
 }

Note that pod translators should look at only paragraphs beginning
 with a pod directive (it makes
parsing easier), whereas the compiler
 actually knows to look for pod escapes even in the middle of a

paragraph. This means that the following secret stuff will be
 ignored by both the compiler and the

Perl version 5.8.8 documentation - perlsyn

Page 11http://perldoc.perl.org

translators. $a=3;
 =secret stuff
 warn "Neither POD nor CODE!?"
 =cut back
 print "got $a\n";

You probably shouldn't rely upon the warn() being podded out forever.
 Not all pod translators are
well-behaved in this regard, and perhaps
 the compiler will become pickier.

One may also use pod directives to quickly comment out a section
 of code.

Plain Old Comments (Not!)
Perl can process line directives, much like the C preprocessor. Using
 this, one can control Perl's idea
of filenames and line numbers in
 error or warning messages (especially for strings that are processed

with eval()). The syntax for this mechanism is the same as for most
 C preprocessors: it matches
the regular expression

 # example: '# line 42 "new_filename.plx"'
 /^\# \s*
 line \s+ (\d+) \s*
 (?:\s("?)([^"]+)\2)? \s*
 $/x

with $1 being the line number for the next line, and $3 being
 the optional filename (specified with or
without quotes).

There is a fairly obvious gotcha included with the line directive:
 Debuggers and profilers will only show
the last source line to appear
 at a particular line number in a given file. Care should be taken not
 to
cause line number collisions in code you'd like to debug later.

Here are some examples that you should be able to type into your command
 shell:

 % perl
 # line 200 "bzzzt"
 # the `#' on the previous line must be the first char on line
 die 'foo';
 __END__
 foo at bzzzt line 201.

 % perl
 # line 200 "bzzzt"
 eval qq[\n#line 2001 ""\ndie 'foo']; print $@;
 __END__
 foo at - line 2001.

 % perl
 eval qq[\n#line 200 "foo bar"\ndie 'foo']; print $@;
 __END__
 foo at foo bar line 200.

 % perl
 # line 345 "goop"
 eval "\n#line " . __LINE__ . ' "' . __FILE__ ."\"\ndie 'foo'";
 print $@;
 __END__
 foo at goop line 345.

Perl version 5.8.8 documentation - perlsyn

Page 12http://perldoc.perl.org

