
Perl version 5.8.8 documentation - perltooc

Page 1http://perldoc.perl.org

NAME
perltooc - Tom's OO Tutorial for Class Data in Perl

DESCRIPTION
When designing an object class, you are sometimes faced with the situation
 of wanting common state
shared by all objects of that class.
 Such class attributes act somewhat like global variables for the
entire
 class, but unlike program-wide globals, class attributes have meaning only to
 the class itself.

Here are a few examples where class attributes might come in handy:

to keep a count of the objects you've created, or how many are
 still extant.

to extract the name or file descriptor for a logfile used by a debugging
 method.

to access collective data, like the total amount of cash dispensed by
 all ATMs in a network in a
given day.

to access the last object created by a class, or the most accessed object,
 or to retrieve a list of
all objects.

Unlike a true global, class attributes should not be accessed directly.
 Instead, their state should be
inspected, and perhaps altered, only
 through the mediated access of class methods. These class
attributes
 accessor methods are similar in spirit and function to accessors used
 to manipulate the
state of instance attributes on an object. They provide a
 clear firewall between interface and
implementation.

You should allow access to class attributes through either the class
 name or any object of that class.
If we assume that $an_object is of
 type Some_Class, and the &Some_Class::population_count
method accesses
 class attributes, then these two invocations should both be possible,
 and almost
certainly equivalent.

 Some_Class->population_count()
 $an_object->population_count()

The question is, where do you store the state which that method accesses?
 Unlike more restrictive
languages like C++, where these are called
 static data members, Perl provides no syntactic
mechanism to declare
 class attributes, any more than it provides a syntactic mechanism to
 declare
instance attributes. Perl provides the developer with a broad
 set of powerful but flexible features that
can be uniquely crafted to
 the particular demands of the situation.

A class in Perl is typically implemented in a module. A module consists
 of two complementary feature
sets: a package for interfacing with the
 outside world, and a lexical file scope for privacy. Either of
these
 two mechanisms can be used to implement class attributes. That means you
 get to decide
whether to put your class attributes in package variables
 or to put them in lexical variables.

And those aren't the only decisions to make. If you choose to use package
 variables, you can make
your class attribute accessor methods either ignorant
 of inheritance or sensitive to it. If you choose
lexical variables,
 you can elect to permit access to them from anywhere in the entire file
 scope, or you
can limit direct data access exclusively to the methods
 implementing those attributes.

Class Data in a Can
One of the easiest ways to solve a hard problem is to let someone else
 do it for you! In this case,
Class::Data::Inheritable (available on a
 CPAN near you) offers a canned solution to the class data
problem
 using closures. So before you wade into this document, consider
 having a look at that
module.

Class Data as Package Variables
Because a class in Perl is really just a package, using package variables
 to hold class attributes is the
most natural choice. This makes it simple
 for each class to have its own class attributes. Let's say you

Perl version 5.8.8 documentation - perltooc

Page 2http://perldoc.perl.org

have a class
 called Some_Class that needs a couple of different attributes that you'd
 like to be global
to the entire class. The simplest thing to do is to
 use package variables like $Some_Class::CData1
and $Some_Class::CData2
 to hold these attributes. But we certainly don't want to encourage

outsiders to touch those data directly, so we provide methods
 to mediate access.

In the accessor methods below, we'll for now just ignore the first
 argument--that part to the left of the
arrow on method invocation, which is either a class name or an object reference.

 package Some_Class;
 sub CData1 {
	 shift;	 # XXX: ignore calling class/object
	 $Some_Class::CData1 = shift if @_;
	 return $Some_Class::CData1;
 }
 sub CData2 {
	 shift;	 # XXX: ignore calling class/object
	 $Some_Class::CData2 = shift if @_;
	 return $Some_Class::CData2;
 }

This technique is highly legible and should be completely straightforward
 to even the novice Perl
programmer. By fully qualifying the package
 variables, they stand out clearly when reading the code.
Unfortunately,
 if you misspell one of these, you've introduced an error that's hard
 to catch. It's also
somewhat disconcerting to see the class name itself
 hard-coded in so many places.

Both these problems can be easily fixed. Just add the use strict
 pragma, then pre-declare your
package variables. (The our operator
 will be new in 5.6, and will work for package globals just like my
works for scoped lexicals.)

 package Some_Class;
 use strict;
 our($CData1, $CData2); 	 # our() is new to perl5.6
 sub CData1 {
	 shift;	 # XXX: ignore calling class/object
	 $CData1 = shift if @_;
	 return $CData1;
 }
 sub CData2 {
	 shift;	 # XXX: ignore calling class/object
	 $CData2 = shift if @_;
	 return $CData2;
 }

As with any other global variable, some programmers prefer to start their
 package variables with
capital letters. This helps clarity somewhat, but
 by no longer fully qualifying the package variables,
their significance
 can be lost when reading the code. You can fix this easily enough by
 choosing
better names than were used here.

Putting All Your Eggs in One Basket
Just as the mindless enumeration of accessor methods for instance attributes
 grows tedious after the
first few (see perltoot), so too does the
 repetition begin to grate when listing out accessor methods for
class
 data. Repetition runs counter to the primary virtue of a programmer:
 Laziness, here manifesting
as that innate urge every programmer feels
 to factor out duplicate code whenever possible.

Here's what to do. First, make just one hash to hold all class attributes.

 package Some_Class;

Perl version 5.8.8 documentation - perltooc

Page 3http://perldoc.perl.org

 use strict;
 our %ClassData = (# our() is new to perl5.6
	 CData1 => "",
	 CData2 => "",
);

Using closures (see perlref) and direct access to the package symbol
 table (see perlmod), now clone
an accessor method for each key in
 the %ClassData hash. Each of these methods is used to fetch or
store
 values to the specific, named class attribute.

 for my $datum (keys %ClassData) {
	 no strict "refs";	 # to register new methods in package
	 *$datum = sub {
	 shift;	 # XXX: ignore calling class/object
	 $ClassData{$datum} = shift if @_;
	 return $ClassData{$datum};
	 }
 }

It's true that you could work out a solution employing an &AUTOLOAD
 method, but this approach is
unlikely to prove satisfactory. Your
 function would have to distinguish between class attributes and
object
 attributes; it could interfere with inheritance; and it would have to
 careful about DESTROY.
Such complexity is uncalled for in most cases,
 and certainly in this one.

You may wonder why we're rescinding strict refs for the loop. We're
 manipulating the package's
symbol table to introduce new function names
 using symbolic references (indirect naming), which the
strict pragma
 would otherwise forbid. Normally, symbolic references are a dodgy
 notion at best. This
isn't just because they can be used accidentally
 when you aren't meaning to. It's also because for
most uses
 to which beginning Perl programmers attempt to put symbolic references,
 we have much
better approaches, like nested hashes or hashes of arrays.
 But there's nothing wrong with using
symbolic references to manipulate
 something that is meaningful only from the perspective of the
package
 symbol table, like method names or package variables. In other
 words, when you want to
refer to the symbol table, use symbol references.

Clustering all the class attributes in one place has several advantages.
 They're easy to spot, initialize,
and change. The aggregation also
 makes them convenient to access externally, such as from a
debugger
 or a persistence package. The only possible problem is that we don't
 automatically know
the name of each class's class object, should it have
 one. This issue is addressed below in The
Eponymous Meta-Object.

Inheritance Concerns
Suppose you have an instance of a derived class, and you access class
 data using an inherited
method call. Should that end up referring
 to the base class's attributes, or to those in the derived
class?
 How would it work in the earlier examples? The derived class inherits
 all the base class's
methods, including those that access class attributes.
 But what package are the class attributes
stored in?

The answer is that, as written, class attributes are stored in the package into
 which those methods
were compiled. When you invoke the &CData1 method
 on the name of the derived class or on one of
that class's objects, the
 version shown above is still run, so you'll access $Some_Class::CData1--or
 in
the method cloning version, $Some_Class::ClassData{CData1}.

Think of these class methods as executing in the context of their base
 class, not in that of their
derived class. Sometimes this is exactly
 what you want. If Feline subclasses Carnivore, then the
population of
 Carnivores in the world should go up when a new Feline is born.
 But what if you wanted
to figure out how many Felines you have apart
 from Carnivores? The current approach doesn't
support that.

Perl version 5.8.8 documentation - perltooc

Page 4http://perldoc.perl.org

You'll have to decide on a case-by-case basis whether it makes any sense
 for class attributes to be
package-relative. If you want it to be so,
 then stop ignoring the first argument to the function. Either it
will
 be a package name if the method was invoked directly on a class name,
 or else it will be an object
reference if the method was invoked on an
 object reference. In the latter case, the ref() function
provides the
 class of that object.

 package Some_Class;
 sub CData1 {
	 my $obclass = shift;
	 my $class = ref($obclass) || $obclass;
	 my $varname = $class . "::CData1";
	 no strict "refs"; 	 # to access package data symbolically
	 $$varname = shift if @_;
	 return $$varname;
 }

And then do likewise for all other class attributes (such as CData2,
 etc.) that you wish to access as
package variables in the invoking package
 instead of the compiling package as we had previously.

Once again we temporarily disable the strict references ban, because
 otherwise we couldn't use the
fully-qualified symbolic name for
 the package global. This is perfectly reasonable: since all package

variables by definition live in a package, there's nothing wrong with
 accessing them via that package's
symbol table. That's what it's there
 for (well, somewhat).

What about just using a single hash for everything and then cloning
 methods? What would that look
like? The only difference would be the
 closure used to produce new method entries for the class's
symbol table.

 no strict "refs";
 *$datum = sub {
	 my $obclass = shift;
	 my $class = ref($obclass) || $obclass;
	 my $varname = $class . "::ClassData";
	 $varname->{$datum} = shift if @_;
	 return $varname->{$datum};
 }

The Eponymous Meta-Object
It could be argued that the %ClassData hash in the previous example is
 neither the most imaginative
nor the most intuitive of names. Is there
 something else that might make more sense, be more useful,
or both?

As it happens, yes, there is. For the "class meta-object", we'll use
 a package variable of the same
name as the package itself. Within the
 scope of a package Some_Class declaration, we'll use the
eponymously
 named hash %Some_Class as that class's meta-object. (Using an eponymously
 named
hash is somewhat reminiscent of classes that name their constructors
 eponymously in the Python or
C++ fashion. That is, class Some_Class would
 use &Some_Class::Some_Class as a constructor,
probably even exporting that
 name as well. The StrNum class in Recipe 13.14 in The Perl Cookbook

does this, if you're looking for an example.)

This predictable approach has many benefits, including having a well-known
 identifier to aid in
debugging, transparent persistence,
 or checkpointing. It's also the obvious name for monadic classes
and
 translucent attributes, discussed later.

Here's an example of such a class. Notice how the name of the hash storing the meta-object is the
same as the name of the package
 used to implement the class.

 package Some_Class;

Perl version 5.8.8 documentation - perltooc

Page 5http://perldoc.perl.org

 use strict;

 # create class meta-object using that most perfect of names
 our %Some_Class = (# our() is new to perl5.6
	 CData1 => "",
	 CData2 => "",
);

 # this accessor is calling-package-relative
 sub CData1 {
	 my $obclass = shift;
	 my $class = ref($obclass) || $obclass;
	 no strict "refs"; 	 # to access eponymous meta-object
	 $class->{CData1} = shift if @_;
	 return $class->{CData1};
 }

 # but this accessor is not
 sub CData2 {
	 shift;			 # XXX: ignore calling class/object
	 no strict "refs"; 	 # to access eponymous meta-object
	 __PACKAGE__ -> {CData2} = shift if @_;
	 return __PACKAGE__ -> {CData2};
 }

In the second accessor method, the __PACKAGE__ notation was used for
 two reasons. First, to
avoid hardcoding the literal package name
 in the code in case we later want to change that name.
Second, to
 clarify to the reader that what matters here is the package currently
 being compiled into,
not the package of the invoking object or class.
 If the long sequence of non-alphabetic characters
bothers you, you can
 always put the __PACKAGE__ in a variable first.

 sub CData2 {
	 shift;			 # XXX: ignore calling class/object
	 no strict "refs"; 	 # to access eponymous meta-object
	 my $class = __PACKAGE__;
	 $class->{CData2} = shift if @_;
	 return $class->{CData2};
 }

Even though we're using symbolic references for good not evil, some
 folks tend to become unnerved
when they see so many places with strict
 ref checking disabled. Given a symbolic reference, you can
always
 produce a real reference (the reverse is not true, though). So we'll
 create a subroutine that
does this conversion for us. If invoked as a
 function of no arguments, it returns a reference to the
compiling class's
 eponymous hash. Invoked as a class method, it returns a reference to
 the
eponymous hash of its caller. And when invoked as an object method,
 this function returns a
reference to the eponymous hash for whatever
 class the object belongs to.

 package Some_Class;
 use strict;

 our %Some_Class = (# our() is new to perl5.6
	 CData1 => "",
	 CData2 => "",
);

Perl version 5.8.8 documentation - perltooc

Page 6http://perldoc.perl.org

 # tri-natured: function, class method, or object method
 sub _classobj {
	 my $obclass = shift || __PACKAGE__;
	 my $class = ref($obclass) || $obclass;
	 no strict "refs"; # to convert sym ref to real one
	 return \%$class;
 }

 for my $datum (keys %{ _classobj() }) {
	 # turn off strict refs so that we can
	 # register a method in the symbol table
	 no strict "refs";
	 *$datum = sub {
	 use strict "refs";
	 my $self = shift->_classobj();
	 $self->{$datum} = shift if @_;
	 return $self->{$datum};
	 }
 }

Indirect References to Class Data
A reasonably common strategy for handling class attributes is to store
 a reference to each package
variable on the object itself. This is
 a strategy you've probably seen before, such as in perltoot and
perlbot, but there may be variations in the example below that you
 haven't thought of before.

 package Some_Class;
 our($CData1, $CData2); 	 # our() is new to perl5.6

 sub new {
	 my $obclass = shift;
	 return bless my $self = {
	 ObData1 => "",
	 ObData2 => "",
	 CData1 => \$CData1,
	 CData2 => \$CData2,
	 } => (ref $obclass || $obclass);
 }

 sub ObData1 {
	 my $self = shift;
	 $self->{ObData1} = shift if @_;
	 return $self->{ObData1};
 }

 sub ObData2 {
	 my $self = shift;
	 $self->{ObData2} = shift if @_;
	 return $self->{ObData2};
 }

 sub CData1 {
	 my $self = shift;
	 my $dataref = ref $self
			 ? $self->{CData1}

Perl version 5.8.8 documentation - perltooc

Page 7http://perldoc.perl.org

			 : \$CData1;
	 $$dataref = shift if @_;
	 return $$dataref;
 }

 sub CData2 {
	 my $self = shift;
	 my $dataref = ref $self
			 ? $self->{CData2}
			 : \$CData2;
	 $$dataref = shift if @_;
	 return $$dataref;
 }

As written above, a derived class will inherit these methods, which
 will consequently access package
variables in the base class's package.
 This is not necessarily expected behavior in all circumstances.
Here's an
 example that uses a variable meta-object, taking care to access the
 proper package's data.

	 package Some_Class;
	 use strict;

	 our %Some_Class = (# our() is new to perl5.6
	 CData1 => "",
	 CData2 => "",
);

	 sub _classobj {
	 my $self = shift;
	 my $class = ref($self) || $self;
	 no strict "refs";
	 # get (hard) ref to eponymous meta-object
	 return \%$class;
	 }

	 sub new {
	 my $obclass = shift;
	 my $classobj = $obclass->_classobj();
	 bless my $self = {
		 ObData1 => "",
		 ObData2 => "",
		 CData1 => \$classobj->{CData1},
		 CData2 => \$classobj->{CData2},
	 } => (ref $obclass || $obclass);
	 return $self;
	 }

	 sub ObData1 {
	 my $self = shift;
	 $self->{ObData1} = shift if @_;
	 return $self->{ObData1};
	 }

	 sub ObData2 {
	 my $self = shift;

Perl version 5.8.8 documentation - perltooc

Page 8http://perldoc.perl.org

	 $self->{ObData2} = shift if @_;
	 return $self->{ObData2};
	 }

	 sub CData1 {
	 my $self = shift;
	 $self = $self->_classobj() unless ref $self;
	 my $dataref = $self->{CData1};
	 $$dataref = shift if @_;
	 return $$dataref;
	 }

	 sub CData2 {
	 my $self = shift;
	 $self = $self->_classobj() unless ref $self;
	 my $dataref = $self->{CData2};
	 $$dataref = shift if @_;
	 return $$dataref;
	 }

Not only are we now strict refs clean, using an eponymous meta-object
 seems to make the code
cleaner. Unlike the previous version, this one
 does something interesting in the face of inheritance: it
accesses the
 class meta-object in the invoking class instead of the one into which
 the method was
initially compiled.

You can easily access data in the class meta-object, making
 it easy to dump the complete class state
using an external mechanism such
 as when debugging or implementing a persistent class. This works
because
 the class meta-object is a package variable, has a well-known name, and
 clusters all its data
together. (Transparent persistence
 is not always feasible, but it's certainly an appealing idea.)

There's still no check that object accessor methods have not been
 invoked on a class name. If strict
ref checking is enabled, you'd
 blow up. If not, then you get the eponymous meta-object. What you do

with--or about--this is up to you. The next two sections demonstrate
 innovative uses for this powerful
feature.

Monadic Classes
Some of the standard modules shipped with Perl provide class interfaces
 without any attribute
methods whatsoever. The most commonly used module
 not numbered amongst the pragmata, the
Exporter module, is a class with
 neither constructors nor attributes. Its job is simply to provide a

standard interface for modules wishing to export part of their namespace
 into that of their caller.
Modules use the Exporter's &import method by
 setting their inheritance list in their package's @ISA
array to mention
 "Exporter". But class Exporter provides no constructor, so you can't
 have several
instances of the class. In fact, you can't have any--it
 just doesn't make any sense. All you get is its
methods. Its interface
 contains no statefulness, so state data is wholly superfluous.

Another sort of class that pops up from time to time is one that supports
 a unique instance. Such
classes are called monadic classes, or less
 formally, singletons or highlander classes.

If a class is monadic, where do you store its state, that is,
 its attributes? How do you make sure that
there's never more than
 one instance? While you could merely use a slew of package variables,
 it's a
lot cleaner to use the eponymously named hash. Here's a complete
 example of a monadic class:

 package Cosmos;
 %Cosmos = ();

 # accessor method for "name" attribute

Perl version 5.8.8 documentation - perltooc

Page 9http://perldoc.perl.org

 sub name {
	 my $self = shift;
	 $self->{name} = shift if @_;
	 return $self->{name};
 }

 # read-only accessor method for "birthday" attribute
 sub birthday {
	 my $self = shift;
	 die "can't reset birthday" if @_; # XXX: croak() is better
	 return $self->{birthday};
 }

 # accessor method for "stars" attribute
 sub stars {
	 my $self = shift;
	 $self->{stars} = shift if @_;
	 return $self->{stars};
 }

 # oh my - one of our stars just went out!
 sub supernova {
	 my $self = shift;
	 my $count = $self->stars();
	 $self->stars($count - 1) if $count > 0;
 }

 # constructor/initializer method - fix by reboot
 sub bigbang {
	 my $self = shift;
	 %$self = (
	 name 	 => "the world according to tchrist",
	 birthday 	 => time(),
	 stars 	 => 0,
);
	 return $self;	 # yes, it's probably a class. SURPRISE!
 }

 # After the class is compiled, but before any use or require
 # returns, we start off the universe with a bang.
 __PACKAGE__ -> bigbang();

Hold on, that doesn't look like anything special. Those attribute
 accessors look no different than they
would if this were a regular class
 instead of a monadic one. The crux of the matter is there's nothing

that says that $self must hold a reference to a blessed object. It merely
 has to be something you can
invoke methods on. Here the package name
 itself, Cosmos, works as an object. Look at the
&supernova method. Is that
 a class method or an object method? The answer is that static analysis

cannot reveal the answer. Perl doesn't care, and neither should you.
 In the three attribute methods,
%$self is really accessing the %Cosmos
 package variable.

If like Stephen Hawking, you posit the existence of multiple, sequential,
 and unrelated universes, then
you can invoke the &bigbang method yourself
 at any time to start everything all over again. You might
think of
 &bigbang as more of an initializer than a constructor, since the function
 doesn't allocate new
memory; it only initializes what's already there.
 But like any other constructor, it does return a scalar

Perl version 5.8.8 documentation - perltooc

Page 10http://perldoc.perl.org

value to use
 for later method invocations.

Imagine that some day in the future, you decide that one universe just
 isn't enough. You could write a
new class from scratch, but you already
 have an existing class that does what you want--except that
it's monadic,
 and you want more than just one cosmos.

That's what code reuse via subclassing is all about. Look how short
 the new code is:

 package Multiverse;
 use Cosmos;
 @ISA = qw(Cosmos);

 sub new {
	 my $protoverse = shift;
	 my $class = ref($protoverse) || $protoverse;
	 my $self = {};
	 return bless($self, $class)->bigbang();
 }
 1;

Because we were careful to be good little creators when we designed our
 Cosmos class, we can now
reuse it without touching a single line of code
 when it comes time to write our Multiverse class. The
same code that
 worked when invoked as a class method continues to work perfectly well
 when
invoked against separate instances of a derived class.

The astonishing thing about the Cosmos class above is that the value
 returned by the &bigbang
"constructor" is not a reference to a blessed
 object at all. It's just the class's own name. A class name
is, for
 virtually all intents and purposes, a perfectly acceptable object.
 It has state, behavior, and
identity, the three crucial components
 of an object system. It even manifests inheritance,
polymorphism,
 and encapsulation. And what more can you ask of an object?

To understand object orientation in Perl, it's important to recognize the
 unification of what other
programming languages might think of as class
 methods and object methods into just plain methods.
"Class methods"
 and "object methods" are distinct only in the compartmentalizing mind
 of the Perl
programmer, not in the Perl language itself.

Along those same lines, a constructor is nothing special either, which
 is one reason why Perl has no
pre-ordained name for them. "Constructor"
 is just an informal term loosely used to describe a method
that returns
 a scalar value that you can make further method calls against. So long
 as it's either a
class name or an object reference, that's good enough.
 It doesn't even have to be a reference to a
brand new object.

You can have as many--or as few--constructors as you want, and you can
 name them whatever you
care to. Blindly and obediently using new()
 for each and every constructor you ever write is to speak
Perl with
 such a severe C++ accent that you do a disservice to both languages.
 There's no reason to
insist that each class have but one constructor,
 or that a constructor be named new(), or that a
constructor be
 used solely as a class method and not an object method.

The next section shows how useful it can be to further distance ourselves
 from any formal distinction
between class method calls and object method
 calls, both in constructors and in accessor methods.

Translucent Attributes
A package's eponymous hash can be used for more than just containing
 per-class, global state data.
It can also serve as a sort of template
 containing default settings for object attributes. These default

settings can then be used in constructors for initialization of a
 particular object. The class's
eponymous hash can also be used to
 implement translucent attributes. A translucent attribute is one

that has a class-wide default. Each object can set its own value for the
 attribute, in which case
$object->attribute() returns that value.
 But if no value has been set, then

Perl version 5.8.8 documentation - perltooc

Page 11http://perldoc.perl.org

$object->attribute() returns
 the class-wide default.

We'll apply something of a copy-on-write approach to these translucent
 attributes. If you're just
fetching values from them, you get
 translucency. But if you store a new value to them, that new value
is
 set on the current object. On the other hand, if you use the class as
 an object and store the attribute
value directly on the class, then the
 meta-object's value changes, and later fetch operations on
objects with
 uninitialized values for those attributes will retrieve the meta-object's
 new values. Objects
with their own initialized values, however, won't
 see any change.

Let's look at some concrete examples of using these properties before we
 show how to implement
them. Suppose that a class named Some_Class
 had a translucent data attribute called "color". First
you set the color
 in the meta-object, then you create three objects using a constructor
 that happens to
be named &spawn.

 use Vermin;
 Vermin->color("vermilion");

 $ob1 = Vermin->spawn(); 	 # so that's where Jedi come from
 $ob2 = Vermin->spawn();
 $ob3 = Vermin->spawn();

 print $obj3->color(); 	 # prints "vermilion"

Each of these objects' colors is now "vermilion", because that's the
 meta-object's value for that
attribute, and these objects do not have
 individual color values set.

Changing the attribute on one object has no effect on other objects
 previously created.

 $ob3->color("chartreuse");
 print $ob3->color(); 	 # prints "chartreuse"
 print $ob1->color(); 	 # prints "vermilion", translucently

If you now use $ob3 to spawn off another object, the new object will
 take the color its parent held,
which now happens to be "chartreuse".
 That's because the constructor uses the invoking object as its
template
 for initializing attributes. When that invoking object is the
 class name, the object used as a
template is the eponymous meta-object.
 When the invoking object is a reference to an instantiated
object, the
 &spawn constructor uses that existing object as a template.

 $ob4 = $ob3->spawn();	 # $ob3 now template, not %Vermin
 print $ob4->color(); 	 # prints "chartreuse"

Any actual values set on the template object will be copied to the
 new object. But attributes undefined
in the template object, being
 translucent, will remain undefined and consequently translucent in the

new one as well.

Now let's change the color attribute on the entire class:

 Vermin->color("azure");
 print $ob1->color(); 	 # prints "azure"
 print $ob2->color(); 	 # prints "azure"
 print $ob3->color(); 	 # prints "chartreuse"
 print $ob4->color(); 	 # prints "chartreuse"

That color change took effect only in the first pair of objects, which
 were still translucently accessing
the meta-object's values. The second
 pair had per-object initialized colors, and so didn't change.

One important question remains. Changes to the meta-object are reflected
 in translucent attributes in

Perl version 5.8.8 documentation - perltooc

Page 12http://perldoc.perl.org

the entire class, but what about
 changes to discrete objects? If you change the color of $ob3, does
the
 value of $ob4 see that change? Or vice-versa. If you change the color
 of $ob4, does then the
value of $ob3 shift?

 $ob3->color("amethyst");
 print $ob3->color(); 	 # prints "amethyst"
 print $ob4->color(); 	 # hmm: "chartreuse" or "amethyst"?

While one could argue that in certain rare cases it should, let's not
 do that. Good taste aside, we want
the answer to the question posed in
 the comment above to be "chartreuse", not "amethyst". So we'll
treat
 these attributes similar to the way process attributes like environment
 variables, user and group
IDs, or the current working directory are
 treated across a fork(). You can change only yourself, but
you will see
 those changes reflected in your unspawned children. Changes to one object
 will
propagate neither up to the parent nor down to any existing child objects.
 Those objects made later,
however, will see the changes.

If you have an object with an actual attribute value, and you want to
 make that object's attribute value
translucent again, what do you do?
 Let's design the class so that when you invoke an accessor
method with undef as its argument, that attribute returns to translucency.

 $ob4->color(undef);		 # back to "azure"

Here's a complete implementation of Vermin as described above.

 package Vermin;

 # here's the class meta-object, eponymously named.
 # it holds all class attributes, and also all instance attributes
 # so the latter can be used for both initialization
 # and translucency.

 our %Vermin = (# our() is new to perl5.6
	 PopCount => 0,		 # capital for class attributes
	 color => "beige", # small for instance attributes
);

 # constructor method
 # invoked as class method or object method
 sub spawn {
	 my $obclass = shift;
	 my $class = ref($obclass) || $obclass;
	 my $self = {};
	 bless($self, $class);
	 $class->{PopCount}++;
	 # init fields from invoking object, or omit if
	 # invoking object is the class to provide translucency
	 %$self = %$obclass if ref $obclass;
	 return $self;
 }

 # translucent accessor for "color" attribute
 # invoked as class method or object method
 sub color {
	 my $self = shift;
	 my $class = ref($self) || $self;

Perl version 5.8.8 documentation - perltooc

Page 13http://perldoc.perl.org

	 # handle class invocation
	 unless (ref $self) {
	 $class->{color} = shift if @_;
	 return $class->{color}
	 }

	 # handle object invocation
	 $self->{color} = shift if @_;
	 if (defined $self->{color}) { # not exists!
	 return $self->{color};
	 } else {
	 return $class->{color};
	 }
 }

 # accessor for "PopCount" class attribute
 # invoked as class method or object method
 # but uses object solely to locate meta-object
 sub population {
	 my $obclass = shift;
	 my $class = ref($obclass) || $obclass;
	 return $class->{PopCount};
 }

 # instance destructor
 # invoked only as object method
 sub DESTROY {
	 my $self = shift;
	 my $class = ref $self;
	 $class->{PopCount}--;
 }

Here are a couple of helper methods that might be convenient. They aren't
 accessor methods at all.
They're used to detect accessibility of data
 attributes. The &is_translucent method determines
whether a particular
 object attribute is coming from the meta-object. The &has_attribute
 method
detects whether a class implements a particular property at all.
 It could also be used to distinguish
undefined properties from non-existent
 ones.

 # detect whether an object attribute is translucent
 # (typically?) invoked only as object method
 sub is_translucent {
	 my($self, $attr) = @_;
	 return !defined $self->{$attr};
 }

 # test for presence of attribute in class
 # invoked as class method or object method
 sub has_attribute {
	 my($self, $attr) = @_;
	 my $class = ref($self) || $self;
	 return exists $class->{$attr};
 }

If you prefer to install your accessors more generically, you can make
 use of the upper-case versus

Perl version 5.8.8 documentation - perltooc

Page 14http://perldoc.perl.org

lower-case convention to register into the
 package appropriate methods cloned from generic closures.

 for my $datum (keys %{ +__PACKAGE__ }) {
	 *$datum = ($datum =~ /^[A-Z]/)
	 ? sub { # install class accessor
		 my $obclass = shift;
		 my $class = ref($obclass) || $obclass;
		 return $class->{$datum};
		 }
	 : sub { # install translucent accessor
		 my $self = shift;
		 my $class = ref($self) || $self;
		 unless (ref $self) {
			 $class->{$datum} = shift if @_;
			 return $class->{$datum}
		 }
		 $self->{$datum} = shift if @_;
		 return defined $self->{$datum}
			 ? $self -> {$datum}
			 : $class -> {$datum}
		 }
 }

Translations of this closure-based approach into C++, Java, and Python
 have been left as exercises
for the reader. Be sure to send us mail as
 soon as you're done.

Class Data as Lexical Variables
Privacy and Responsibility

Unlike conventions used by some Perl programmers, in the previous
 examples, we didn't prefix the
package variables used for class attributes
 with an underscore, nor did we do so for the names of the
hash keys used
 for instance attributes. You don't need little markers on data names to
 suggest
nominal privacy on attribute variables or hash keys, because these
 are already notionally private!
Outsiders have no business whatsoever
 playing with anything within a class save through the
mediated access of
 its documented interface; in other words, through method invocations.
 And not
even through just any method, either. Methods that begin with
 an underscore are traditionally
considered off-limits outside the class.
 If outsiders skip the documented method interface to poke
around the
 internals of your class and end up breaking something, that's not your
 fault--it's theirs.

Perl believes in individual responsibility rather than mandated control.
 Perl respects you enough to let
you choose your own preferred level of
 pain, or of pleasure. Perl believes that you are creative,
intelligent,
 and capable of making your own decisions--and fully expects you to
 take complete
responsibility for your own actions. In a perfect world,
 these admonitions alone would suffice, and
everyone would be intelligent,
 responsible, happy, and creative. And careful. One probably shouldn't

forget careful, and that's a good bit harder to expect. Even Einstein
 would take wrong turns by
accident and end up lost in the wrong part
 of town.

Some folks get the heebie-jeebies when they see package variables
 hanging out there for anyone to
reach over and alter them. Some folks
 live in constant fear that someone somewhere might do
something wicked.
 The solution to that problem is simply to fire the wicked, of course.
 But
unfortunately, it's not as simple as all that. These cautious
 types are also afraid that they or others will
do something not so
 much wicked as careless, whether by accident or out of desperation.
 If we fire
everyone who ever gets careless, pretty soon there won't be
 anybody left to get any work done.

Whether it's needless paranoia or sensible caution, this uneasiness can
 be a problem for some
people. We can take the edge off their discomfort
 by providing the option of storing class attributes as
lexical variables
 instead of as package variables. The my() operator is the source of
 all privacy in Perl,
and it is a powerful form of privacy indeed.

Perl version 5.8.8 documentation - perltooc

Page 15http://perldoc.perl.org

It is widely perceived, and indeed has often been written, that Perl
 provides no data hiding, that it
affords the class designer no privacy
 nor isolation, merely a rag-tag assortment of weak and
unenforceable
 social conventions instead. This perception is demonstrably false and
 easily disproven.
In the next section, we show how to implement forms
 of privacy that are far stronger than those
provided in nearly any
 other object-oriented language.

File-Scoped Lexicals
A lexical variable is visible only through the end of its static scope.
 That means that the only code able
to access that variable is code
 residing textually below the my() operator through the end of its block
 if
it has one, or through the end of the current file if it doesn't.

Starting again with our simplest example given at the start of this
 document, we replace our()
variables with my() versions.

 package Some_Class;
 my($CData1, $CData2); # file scope, not in any package
 sub CData1 {
	 shift;	 # XXX: ignore calling class/object
	 $CData1 = shift if @_;
	 return $CData1;
 }
 sub CData2 {
	 shift;	 # XXX: ignore calling class/object
	 $CData2 = shift if @_;
	 return $CData2;
 }

So much for that old $Some_Class::CData1 package variable and its brethren!
 Those are gone now,
replaced with lexicals. No one outside the
 scope can reach in and alter the class state without
resorting to the
 documented interface. Not even subclasses or superclasses of
 this one have
unmediated access to $CData1. They have to invoke the &CData1
 method against Some_Class or an
instance thereof, just like anybody else.

To be scrupulously honest, that last statement assumes you haven't packed
 several classes together
into the same file scope, nor strewn your class
 implementation across several different files.
Accessibility of those
 variables is based uniquely on the static file scope. It has nothing to
 do with the
package. That means that code in a different file but
 the same package (class) could not access
those variables, yet code in the
 same file but a different package (class) could. There are sound
reasons
 why we usually suggest a one-to-one mapping between files and packages
 and modules and
classes. You don't have to stick to this suggestion if
 you really know what you're doing, but you're apt
to confuse yourself
 otherwise, especially at first.

If you'd like to aggregate your class attributes into one lexically scoped,
 composite structure, you're
perfectly free to do so.

 package Some_Class;
 my %ClassData = (
	 CData1 => "",
	 CData2 => "",
);
 sub CData1 {
	 shift;	 # XXX: ignore calling class/object
	 $ClassData{CData1} = shift if @_;
	 return $ClassData{CData1};
 }
 sub CData2 {
	 shift;	 # XXX: ignore calling class/object

Perl version 5.8.8 documentation - perltooc

Page 16http://perldoc.perl.org

	 $ClassData{CData2} = shift if @_;
	 return $ClassData{CData2};
 }

To make this more scalable as other class attributes are added, we can
 again register closures into
the package symbol table to create accessor
 methods for them.

 package Some_Class;
 my %ClassData = (
	 CData1 => "",
	 CData2 => "",
);
 for my $datum (keys %ClassData) {
	 no strict "refs";
	 *$datum = sub {
	 shift;	 # XXX: ignore calling class/object
	 $ClassData{$datum} = shift if @_;
	 return $ClassData{$datum};
	 };
 }

Requiring even your own class to use accessor methods like anybody else is
 probably a good thing.
But demanding and expecting that everyone else,
 be they subclass or superclass, friend or foe, will all
come to your
 object through mediation is more than just a good idea. It's absolutely
 critical to the
model. Let there be in your mind no such thing as
 "public" data, nor even "protected" data, which is a
seductive but
 ultimately destructive notion. Both will come back to bite at you.
 That's because as soon
as you take that first step out of the solid
 position in which all state is considered completely private,
save from the
 perspective of its own accessor methods, you have violated the envelope.
 And, having
pierced that encapsulating envelope, you shall doubtless
 someday pay the price when future changes
in the implementation break
 unrelated code. Considering that avoiding this infelicitous outcome was

precisely why you consented to suffer the slings and arrows of obsequious
 abstraction by turning to
object orientation in the first place, such
 breakage seems unfortunate in the extreme.

More Inheritance Concerns
Suppose that Some_Class were used as a base class from which to derive
 Another_Class. If you
invoke a &CData method on the derived class or
 on an object of that class, what do you get? Would
the derived class
 have its own state, or would it piggyback on its base class's versions
 of the class
attributes?

The answer is that under the scheme outlined above, the derived class
 would not have its own state
data. As before, whether you consider
 this a good thing or a bad one depends on the semantics of the
classes
 involved.

The cleanest, sanest, simplest way to address per-class state in a
 lexical is for the derived class to
override its base class's version
 of the method that accesses the class attributes. Since the actual
method
 called is the one in the object's derived class if this exists, you
 automatically get per-class
state this way. Any urge to provide an
 unadvertised method to sneak out a reference to the
%ClassData hash
 should be strenuously resisted.

As with any other overridden method, the implementation in the
 derived class always has the option
of invoking its base class's
 version of the method in addition to its own. Here's an example:

 package Another_Class;
 @ISA = qw(Some_Class);

 my %ClassData = (
	 CData1 => "",

Perl version 5.8.8 documentation - perltooc

Page 17http://perldoc.perl.org

);

 sub CData1 {
	 my($self, $newvalue) = @_;
	 if (@_ > 1) {
	 # set locally first
	 $ClassData{CData1} = $newvalue;

	 # then pass the buck up to the first
	 # overridden version, if there is one
	 if ($self->can("SUPER::CData1")) {
		 $self->SUPER::CData1($newvalue);
	 }
	 }
	 return $ClassData{CData1};
 }

Those dabbling in multiple inheritance might be concerned
 about there being more than one override.

 for my $parent (@ISA) {
	 my $methname = $parent . "::CData1";
	 if ($self->can($methname)) {
	 $self->$methname($newvalue);
	 }
 }

Because the &UNIVERSAL::can method returns a reference
 to the function directly, you can use this
directly
 for a significant performance improvement:

 for my $parent (@ISA) {
	 if (my $coderef = $self->can($parent . "::CData1")) {
	 $self->$coderef($newvalue);
	 }
 }

If you override UNIVERSAL::can in your own classes, be sure to return the
 reference appropriately.

Locking the Door and Throwing Away the Key
As currently implemented, any code within the same scope as the
 file-scoped lexical %ClassData can
alter that hash directly. Is that
 ok? Is it acceptable or even desirable to allow other parts of the

implementation of this class to access class attributes directly?

That depends on how careful you want to be. Think back to the Cosmos
 class. If the &supernova
method had directly altered $Cosmos::Stars or $Cosmos::Cosmos{stars}, then we wouldn't have
been able to reuse the
 class when it came to inventing a Multiverse. So letting even the class
 itself
access its own class attributes without the mediating intervention of
 properly designed accessor
methods is probably not a good idea after all.

Restricting access to class attributes from the class itself is usually
 not enforceable even in strongly
object-oriented languages. But in Perl,
 you can.

Here's one way:

 package Some_Class;

 { # scope for hiding $CData1

Perl version 5.8.8 documentation - perltooc

Page 18http://perldoc.perl.org

	 my $CData1;
	 sub CData1 {
	 shift;	 # XXX: unused
	 $CData1 = shift if @_;
	 return $CData1;
	 }
 }

 { # scope for hiding $CData2
	 my $CData2;
	 sub CData2 {
	 shift;	 # XXX: unused
	 $CData2 = shift if @_;
	 return $CData2;
	 }
 }

No one--absolutely no one--is allowed to read or write the class
 attributes without the mediation of the
managing accessor method, since
 only that method has access to the lexical variable it's managing.

This use of mediated access to class attributes is a form of privacy far
 stronger than most OO
languages provide.

The repetition of code used to create per-datum accessor methods chafes
 at our Laziness, so we'll
again use closures to create similar
 methods.

 package Some_Class;

 { # scope for ultra-private meta-object for class attributes
	 my %ClassData = (
	 CData1 => "",
	 CData2 => "",
);

	 for my $datum (keys %ClassData) {
	 no strict "refs";
	 *$datum = sub {
		 use strict "refs";
		 my ($self, $newvalue) = @_;
		 $ClassData{$datum} = $newvalue if @_ > 1;
		 return $ClassData{$datum};
	 }
	 }

 }

The closure above can be modified to take inheritance into account using
 the &UNIVERSAL::can
method and SUPER as shown previously.

Translucency Revisited
The Vermin class demonstrates translucency using a package variable,
 eponymously named
%Vermin, as its meta-object. If you prefer to
 use absolutely no package variables beyond those
necessary to appease
 inheritance or possibly the Exporter, this strategy is closed to you.
 That's too
bad, because translucent attributes are an appealing
 technique, so it would be valuable to devise an
implementation using
 only lexicals.

Perl version 5.8.8 documentation - perltooc

Page 19http://perldoc.perl.org

There's a second reason why you might wish to avoid the eponymous
 package hash. If you use class
names with double-colons in them, you
 would end up poking around somewhere you might not have
meant to poke.

 package Vermin;
 $class = "Vermin";
 $class->{PopCount}++;
 # accesses $Vermin::Vermin{PopCount}

 package Vermin::Noxious;
 $class = "Vermin::Noxious";
 $class->{PopCount}++;
 # accesses $Vermin::Noxious{PopCount}

In the first case, because the class name had no double-colons, we got
 the hash in the current
package. But in the second case, instead of
 getting some hash in the current package, we got the
hash %Noxious in
 the Vermin package. (The noxious vermin just invaded another package and

sprayed their data around it. :-) Perl doesn't support relative packages
 in its naming conventions, so
any double-colons trigger a fully-qualified
 lookup instead of just looking in the current package.

In practice, it is unlikely that the Vermin class had an existing
 package variable named %Noxious that
you just blew away. If you're
 still mistrustful, you could always stake out your own territory
 where you
know the rules, such as using Eponymous::Vermin::Noxious or
 Hieronymus::Vermin::Boschious or
Leave_Me_Alone::Vermin::Noxious as class
 names instead. Sure, it's in theory possible that
someone else has
 a class named Eponymous::Vermin with its own %Noxious hash, but this
 kind of
thing is always true. There's no arbiter of package names.
 It's always the case that globals like
@Cwd::ISA would collide if more
 than one class uses the same Cwd package.

If this still leaves you with an uncomfortable twinge of paranoia,
 we have another solution for you.
There's nothing that says that you
 have to have a package variable to hold a class meta-object, either
for
 monadic classes or for translucent attributes. Just code up the methods
 so that they access a
lexical instead.

Here's another implementation of the Vermin class with semantics identical
 to those given previously,
but this time using no package variables.

 package Vermin;

 # Here's the class meta-object, eponymously named.
 # It holds all class data, and also all instance data
 # so the latter can be used for both initialization
 # and translucency. it's a template.
 my %ClassData = (
	 PopCount => 0,		 # capital for class attributes
	 color => "beige", # small for instance attributes
);

 # constructor method
 # invoked as class method or object method
 sub spawn {
	 my $obclass = shift;
	 my $class = ref($obclass) || $obclass;
	 my $self = {};
	 bless($self, $class);
	 $ClassData{PopCount}++;
	 # init fields from invoking object, or omit if

Perl version 5.8.8 documentation - perltooc

Page 20http://perldoc.perl.org

	 # invoking object is the class to provide translucency
	 %$self = %$obclass if ref $obclass;
	 return $self;
 }

 # translucent accessor for "color" attribute
 # invoked as class method or object method
 sub color {
	 my $self = shift;

	 # handle class invocation
	 unless (ref $self) {
	 $ClassData{color} = shift if @_;
	 return $ClassData{color}
	 }

	 # handle object invocation
	 $self->{color} = shift if @_;
	 if (defined $self->{color}) { # not exists!
	 return $self->{color};
	 } else {
	 return $ClassData{color};
	 }
 }

 # class attribute accessor for "PopCount" attribute
 # invoked as class method or object method
 sub population {
	 return $ClassData{PopCount};
 }

 # instance destructor; invoked only as object method
 sub DESTROY {
	 $ClassData{PopCount}--;
 }

 # detect whether an object attribute is translucent
 # (typically?) invoked only as object method
 sub is_translucent {
	 my($self, $attr) = @_;
	 $self = \%ClassData if !ref $self;
	 return !defined $self->{$attr};
 }

 # test for presence of attribute in class
 # invoked as class method or object method
 sub has_attribute {
	 my($self, $attr) = @_;
	 return exists $ClassData{$attr};
 }

Perl version 5.8.8 documentation - perltooc

Page 21http://perldoc.perl.org

NOTES
Inheritance is a powerful but subtle device, best used only after careful
 forethought and design.
Aggregation instead of inheritance is often a
 better approach.

You can't use file-scoped lexicals in conjunction with the SelfLoader
 or the AutoLoader, because they
alter the lexical scope in which the
 module's methods wind up getting compiled.

The usual mealy-mouthed package-munging doubtless applies to setting
 up names of object
attributes. For example, $self->{ObData1}
 should probably be $self->{ __PACKAGE__ .
"_ObData1" }, but that
 would just confuse the examples.

SEE ALSO
perltoot, perlobj, perlmod, and perlbot.

The Tie::SecureHash and Class::Data::Inheritable modules from CPAN are
 worth checking out.

AUTHOR AND COPYRIGHT
Copyright (c) 1999 Tom Christiansen.
 All rights reserved.

This documentation is free; you can redistribute it and/or modify it
 under the same terms as Perl itself.

Irrespective of its distribution, all code examples in this file
 are hereby placed into the public domain.
You are permitted and
 encouraged to use this code in your own programs for fun
 or for profit as you
see fit. A simple comment in the code giving
 credit would be courteous but is not required.

ACKNOWLEDGEMENTS
Russ Allbery, Jon Orwant, Randy Ray, Larry Rosler, Nat Torkington,
 and Stephen Warren all
contributed suggestions and corrections to this
 piece. Thanks especially to Damian Conway for his
ideas and feedback,
 and without whose indirect prodding I might never have taken the time
 to show
others how much Perl has to offer in the way of objects once
 you start thinking outside the tiny little
box that today's "popular"
 object-oriented languages enforce.

HISTORY
Last edit: Sun Feb 4 20:50:28 EST 2001

