
Perl version 5.8.8 documentation - threads

Page 1http://perldoc.perl.org

NAME
threads - Perl extension allowing use of interpreter based threads from perl

SYNOPSIS
 use threads;

 sub start_thread {
	 print "Thread started\n";
 }

 my $thread = threads->create("start_thread","argument");
 my $thread2 = $thread->create(sub { print "I am a thread"},"argument");
 my $thread3 = async { foreach (@files) { ... } };

 $thread->join();
 $thread->detach();

 $thread = threads->self();
 $thread = threads->object($tid);

 $thread->tid();
 threads->tid();
 threads->self->tid();

 threads->yield();

 threads->list();

DESCRIPTION
Perl 5.6 introduced something called interpreter threads. Interpreter
 threads are different from
"5005threads" (the thread model of Perl
 5.005) by creating a new perl interpreter per thread and not
sharing
 any data or state between threads by default.

Prior to perl 5.8 this has only been available to people embedding
 perl and for emulating fork() on
windows.

The threads API is loosely based on the old Thread.pm API. It is very
 important to note that variables
are not shared between threads, all
 variables are per default thread local. To use shared variables
one
 must use threads::shared.

It is also important to note that you must enable threads by doing use threads as early as possible
in the script itself and that it
 is not possible to enable threading inside an eval "", do, require, or
use. In particular, if you are intending to share
 variables with threads::shared, you must use
threads before you use threads::shared and threads will emit a warning if you do
 it the other
way around.

$thread = threads->create(function, LIST)

This will create a new thread with the entry point function and give
 it LIST as parameters. It
will return the corresponding threads
 object, or undef if thread creation failed. The new()
method is an
 alias for create().

$thread->join

This will wait for the corresponding thread to join. When the thread
 finishes, join() will return
the return values of the entry point
 function. If the thread has been detached, an error will be

Perl version 5.8.8 documentation - threads

Page 2http://perldoc.perl.org

thrown.The context (void, scalar or list) of the thread creation is also the
 context for join(). This
means that if you intend to return an array
 from a thread, you must use my ($thread) =
threads-new(...)>, and
 that if you intend to return a scalar, you must use my $thread =
....

If the program exits without all other threads having been either
 joined or detached, then a
warning will be issued. (A program exits
 either because one of its threads explicitly calls exit(),
or in the
 case of the main thread, reaches the end of the main program file.)

$thread->detach

Will make the thread unjoinable, and cause any eventual return value
 to be discarded.

threads->self

This will return the thread object for the current thread.

$thread->tid

This will return the id of the thread. Thread IDs are integers, with
 the main thread in a program
being 0. Currently Perl assigns a unique
 tid to every thread ever created in your program,
assigning the first
 thread to be created a tid of 1, and increasing the tid by 1 for each
 new
thread that's created.

NB the class method threads->tid() is a quick way to get the
 current thread id if you don't
have your thread object handy.

threads->object(tid)

This will return the thread object for the thread associated with the
 specified tid. Returns undef
if there is no thread associated with the tid
 or no tid is specified or the specified tid is undef.

threads->yield();

This is a suggestion to the OS to let this thread yield CPU time to other
 threads. What actually
happens is highly dependent upon the underlying
 thread implementation.

You may do use threads qw(yield) then use just a bare yield in your
 code.

threads->list();

This will return a list of all non joined, non detached threads.

async BLOCK;

async creates a thread to execute the block immediately following
 it. This block is treated as
an anonymous sub, and so must have a
 semi-colon after the closing brace. Like
threads->new, async
 returns a thread object.

WARNINGS
A thread exited while %d other threads were still running

A thread (not necessarily the main thread) exited while there were
 still other threads running.
Usually it's a good idea to first collect
 the return values of the created threads by joining them,
and only then
 exit from the main thread.

TODO
The current implementation of threads has been an attempt to get
 a correct threading system working
that could be built on, and optimized, in newer versions of perl.

Currently the overhead of creating a thread is rather large,
 also the cost of returning values can be
large. These are areas
 were there most likely will be work done to optimize what data
 that needs to
be cloned.

Perl version 5.8.8 documentation - threads

Page 3http://perldoc.perl.org

BUGS
Parent-Child threads.

On some platforms it might not be possible to destroy "parent"
 threads while there are still
existing child "threads".

This will possibly be fixed in later versions of perl.

tid is I32

The thread id is a 32 bit integer, it can potentially overflow.
 This might be fixed in a later
version of perl.

Returning objects

When you return an object the entire stash that the object is blessed
 as well. This will lead to a
large memory usage. The ideal situation
 would be to detect the original stash if it existed.

Creating threads inside BEGIN blocks

Creating threads inside BEGIN blocks (or during the compilation phase
 in general) does not
work. (In Windows, trying to use fork() inside
 BEGIN blocks is an equally losing proposition,
since it has been
 implemented in very much the same way as threads.)

PERL_OLD_SIGNALS are not threadsafe, will not be.

If your Perl has been built with PERL_OLD_SIGNALS (one has
 to explicitly add that symbol to
ccflags, see perl -V),
 signal handling is not threadsafe.

AUTHOR and COPYRIGHT
Arthur Bergman <sky at nanisky.com>

threads is released under the same license as Perl.

Thanks to

Richard Soderberg <perl at crystalflame.net>
 Helping me out tons, trying to find reasons for races and
other weird bugs!

Simon Cozens <simon at brecon.co.uk>
 Being there to answer zillions of annoying questions

Rocco Caputo <troc at netrus.net>

Vipul Ved Prakash <mail at vipul.net>
 Helping with debugging.

please join perl-ithreads@perl.org for more information

SEE ALSO
threads::shared, perlthrtut, http://www.perl.com/pub/a/2002/06/11/threads.html, perlcall, perlembed,
perlguts

